SCIENCE CHINA Information Sciences, Volume 63 , Issue 8 : 180503(2020) https://doi.org/10.1007/s11432-020-2953-y

Quantum network based on non-classical light

More info
  • ReceivedMay 5, 2020
  • AcceptedJun 13, 2020
  • PublishedJul 9, 2020


Quantum network enables quantum communication among quantum nodes and provides advantages that are unavailable in any classical network. Based on rapidly developing science and technology in quantum communication, the studies on quantum network have also made important progresses recent years.In this study, we briefly review the experimental progresses in building quantum network based on optical field and discuss the challenges toward a quantum Internet.


This work was supported by National Natural Science Foundation of China (Grant Nos. 11834010, 61925503, 61775127), Key Project of the National Key RD program of China (Grant No. 2016YFA0301402), Applied Basic Research Program of Shanxi Province (Grant No. 201901D211164), and Fund for Shanxi “1331 Project" Key Subjects Construction.


[1] Cirac J I, Ekert A K, Huelga S F. Distributed quantum computation over noisy channels. Phys Rev A, 1999, 59: 4249-4254 CrossRef ADS arXiv Google Scholar

[2] Lim Y L, Beige A, Kwek L C. Repeat-Until-Success Linear Optics Distributed Quantum Computing. Phys Rev Lett, 2005, 95: 030505 CrossRef ADS arXiv Google Scholar

[3] Jiang L, Taylor J M, S?rensen A S. Distributed quantum computation based on small quantum registers. Phys Rev A, 2007, 76: 062323 CrossRef ADS arXiv Google Scholar

[4] Sheng Y B, Zhou L. Distributed secure quantum machine learning. Sci Bull, 2017, 62: 1025-1029 CrossRef Google Scholar

[5] Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145-195. Google Scholar

[6] Diamanti E, Lo H K, Qi B. Practical challenges in quantum key distribution. npj Quantum Inf, 2016, 2: 16025 CrossRef Google Scholar

[7] Huang A, Barz S, Andersson E. Implementation vulnerabilities in general quantum cryptography. New J Phys, 2018, 20: 103016 CrossRef ADS arXiv Google Scholar

[8] Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302 CrossRef ADS arXiv Google Scholar

[9] Hu J Y, Yu B, Jing M Y. Experimental quantum secure direct communication with single photons. Light Sci Appl, 2016, 5: e16144-e16144 CrossRef ADS arXiv Google Scholar

[10] Zhang W, Ding D S, Sheng Y B, et al. Quantum secure direct communication with quantum memory. Phys Rev Lett, 2017, 118: 220501. Google Scholar

[11] Hillery M, Bu?ek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829-1834 CrossRef ADS arXiv Google Scholar

[12] Yin J, Ren J G, Lu H. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 2012, 488: 185-188 CrossRef ADS arXiv Google Scholar

[13] Ma X S, Herbst T, Scheidl T. Quantum teleportation over 143 kilometres using active feed-forward. Nature, 2012, 489: 269-273 CrossRef ADS Google Scholar

[14] Takesue H, Dyer S D, Stevens M J. Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica, 2015, 2: 832-835 CrossRef ADS arXiv Google Scholar

[15] Kimble H J. The quantum Internet. Nature, 2008, 453: 1023-1030 CrossRef ADS arXiv Google Scholar

[16] Pirandola S, Braunstein S L. Physics: Unite to build a quantum Internet. Nature, 2016, 532: 169-171 CrossRef ADS Google Scholar

[17] Wehner S, Elkouss D, Hanson R. Quantum Internet: A vision for the road ahead. Science, 2018, 362: 303. Google Scholar

[18] Townsend P D. Quantum cryptography on multiuser optical fibre networks. Nature, 1997, 385: 47-49 CrossRef ADS Google Scholar

[19] Elliott C. The DARPA quantum network. Quantum communications and cryptography, ed. A. Segienko, Marcel Dekker, CRC Press, 2006. Google Scholar

[20] Poppe A, Peev M, Maurhart O. OUTLINE OF THE SECOQC QUANTUM-KEY-DISTRIBUTION NETWORK IN VIENNA. Int J Quantum Inform, 2008, 06: 209-218 CrossRef Google Scholar

[21] Wang S, Chen W, Yin Z Q. Field test of wavelength-saving quantum key distribution network. Opt Lett, 2010, 35: 2454 CrossRef ADS arXiv Google Scholar

[22] Chen T Y, Wang J, Liang H, et al. Metropolitan all-pass and inter-city quantum communication network. Opt Express 2010, 18: 27217--27225. Google Scholar

[23] Sasaki M, Fujiwara M, Ishizuka H, et al. Field test of quantum key distribution in the Tokyo QKD Network. Opt Express 2011, 19: 10387--10409. Google Scholar

[24] Wang S, Chen W, Yin Z Q, et al. Field and long-term demonstration of a wide area quantum key distribution network. Opt Express 2014, 22: 21739--21756. Google Scholar

[25] Yang Y, Yang J, Zhou Y, et al. Quantum network communication: a discrete-time quantum-walk approach. Sci China Inf Sci 2018, 61: 042501. Google Scholar

[26] Li Z Z, Xu G, Chen X B, et al. Efficient quantum state transmission via perfect quantum network coding. Sci China Inf Sci 2019, 62: 012501. Google Scholar

[27] Wang F, Luo M X, Xu G, et al. Photonic quantum network transmission assisted by the weak cross-Kerr nonlinearity. Sci China-Phys Mech Astron 2018, 61: 060312. Google Scholar

[28] Zou Z Z, Yu X T, Zhang Z C. Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network. Front Phys 2018, 13: 130202. Google Scholar

[29] Wang Y, Li J, Zhang S, et al. Efficient quantum memory for single-photon polarization qubits. Nat Photonics 2019, 13: 346--351. Google Scholar

[30] Guo J, Feng X, Yang P, et al. High-performance Raman quantum memory with optimal control in room temperature atoms. Nat Commun 2019, 10: 148. Google Scholar

[31] Hosseini M, Sparkes B M, Hétet G, et al. Coherent optical pulse sequencer for quantum applications. Nature 2009, 461: 241--245. Google Scholar

[32] Hedges M P, Longdell J J, Li Y, et al. Efficient quantum memory for light. Nature 2010, 465: 1052--1056. Google Scholar

[33] Clausen C, Usmani I, Bussières F, et al. Quantum storage of photonic entanglement in a crystal. Nature 2011, 469: 508--511. Google Scholar

[34] Briegel H J, Dür W, Cirac J I, et al. Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication. Phys Rev Lett 1998, 81: 5932--5935. Google Scholar

[35] Duan L M, Lukin M D, Cirac J I, et al. Long-distance quantum communication with atomic ensembles and linear optics. Nature 2001, 414: 413--418. Google Scholar

[36] Braunstein S L, van Loock P. Quantum information with continuous variables. Rev Mod Phys 2005, 77: 513--577. Google Scholar

[37] Weedbrook C, Pirandola S, García-Patrón R, et al. Gaussian quantum information. Rev Mod Phys 2012, 84: 621--669. Google Scholar

[38] Wang X B, Hiroshima T, Tomita A, et al. Quantum information with Gaussian states. Phys Rep, 2007, 448: 1-111. Google Scholar

[39] van Loock P, Braunstein S L. Multipartite Entanglement for Continuous Variables: A Quantum Teleportation Network. Phys Rev Lett 2000, 84: 3482--3485. Google Scholar

[40] Yonezawa H, Aoki T, Furusawa A. Demonstration of a quantum teleportation network for continuous variables. Nature 2004, 431: 430--433. Google Scholar

[41] Jing J, Zhang J, Yan Y, et al. Experimental Demonstration of Tripartite Entanglement and Controlled Dense Coding for Continuous Variables. Phys Rev Lett 2003, 90: 167903. Google Scholar

[42] Gu M, Weedbrook C, Menicucci N C, et al. Quantum computing with continuous-variable clusters. Phys Rev A 2009, 79: 062318. Google Scholar

[43] Zhang J, Braunstein S L. Continuous-variable Gaussian analog of cluster states. Phys Rev A 2006, 73: 032318. Google Scholar

[44] van Loock P, Weedbrook C, Gu M. Building Gaussian cluster states by linear optics. Phys Rev A 2007, 76: 032321. Google Scholar

[45] Su X, Wang W, Wang Y, et al. Continuous variable quantum key distribution based on optical entangled states without signal modulation. EPL, 2009, 87 (2): 20005. Google Scholar

[46] Li Z, Zhang Y C, Xu F, et al. Continuous-variable measurement-device-independent quantum key distribution. Phys Rev A 2014, 89: 052301. Google Scholar

[47] Ma X C, Sun S H, Jiang M S, et al. Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Phys Rev A 2014, 89: 042335. Google Scholar

[48] Wang N, Du S, Liu W, et al. Long-Distance Continuous-Variable Quantum Key Distribution with Entangled States. Phys Rev Appl 2018, 10: 064028. Google Scholar

[49] Chai G, Li D, Cao Z, et al. Blind channel estimation for continuous--variable quantum key distribution. Quantum Eng, 2020, 2: e37. Google Scholar

[50] He M, Malaney R, Green J. Multimode CV--QKD with non--Gaussian operations. Quantum Eng. 2020, 2: e40. Google Scholar

[51] Zhao Y, Fung C H F, Qi B, et al. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys Rev A 2008, 78: 042333. Google Scholar

[52] Lydersen L, Wiechers C, Wittmann C, et al. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat Photon 2010, 4: 686--689. Google Scholar

[53] Xu F, Qi B, Lo H K. Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J Phys 2010, 12: 113026. Google Scholar

[54] Mayers D, Yao A. Quantum cryptography with imperfect apparatus. 39th Annual Symposium on Foundations of Computer Science, 1998, 503-509. Google Scholar

[55] Acín A, Brunner N, Gisin N, et al. Device-Independent Security of Quantum Cryptography against Collective Attacks. Phys Rev Lett 2007, 98: 230501. Google Scholar

[56] Braunstein S L, Pirandola S. Side-Channel-Free Quantum Key Distribution. Phys Rev Lett 2012, 108: 130502. Google Scholar

[57] Lo H K, Curty M, Qi B. Measurement-Device-Independent Quantum Key Distribution. Phys Rev Lett 2012, 108: 130503. Google Scholar

[58] Yin H L, Chen T Y, Yu Z W, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys Rev Lett, 2016, 117: 190501. Google Scholar

[59] Liu H, Wang W, Wei K, et al. Experimental Demonstration of High-Rate Measurement-Device-Independent Quantum Key Distribution over Asymmetric Channels. Phys Rev Lett 2019, 122: 160501. Google Scholar

[60] Cui Z X, Zhong W, Zhou L, et al. Measurement-device-independent quantum key distribution with hyper-encoding. Sci China-Phys Mech Astron 2019, 62: 110311. Google Scholar

[61] Roslund J, de Araújo R M, Jiang S, et al. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat Photon 2014, 8: 109--112. Google Scholar

[62] Feng J, Wan Z, Li Y, et al. Distribution of continuous variable quantum entanglement at a telecommunication wavelength over 20 km of optical fiber. Opt Lett 2017, 42: 3399. Google Scholar

[63] Huo M, Qin J, Cheng J, et al. Deterministic quantum teleportation through fiber channels. Sci Adv 2018, 4: eaas9401. Google Scholar

[64] Cubitt T S, Verstraete F, Dür W, et al. Separable States Can Be Used To Distribute Entanglement. Phys Rev Lett 2003, 91: 037902. Google Scholar

[65] Mi?ta L, Korolkova N. Improving continuous-variable entanglement distribution by separable states. Phys Rev A 2009, 80: 032310. Google Scholar

[66] Fedrizzi A, Zuppardo M, Gillett G G, et al. Experimental Distribution of Entanglement with Separable Carriers. Phys Rev Lett 2013, 111: 230504. Google Scholar

[67] Vollmer C E, Schulze D, Eberle T, et al. Experimental Entanglement Distribution by Separable States. Phys Rev Lett 2013, 111: 230505. Google Scholar

[68] Peuntinger C, Chille V, Mi?ta L, et al. Distributing Entanglement with Separable States. Phys Rev Lett 2013, 111: 230506. Google Scholar

[69] Zuppardo M, Krisnanda T, Paterek T, et al. Excessive distribution of quantum entanglement. Phys Rev A 2016, 93: 012305. Google Scholar

[70] Xiang Y, Su X, Mi?ta L, et al. Multipartite Einstein-Podolsky-Rosen steering sharing with separable states. Phys Rev A 2019, 99: 010104. Google Scholar

[71] Jing J, Xie C, Peng K. Tripartite entanglement swapping of bright light beams. Nonlinear optics, quantum optics, 2003, 30: 89-102. Google Scholar

[72] Kómár P, Kessler E M, Bishof M, et al. A quantum network of clocks. Nat Phys 2014, 10: 582--587. Google Scholar

[73] ?ukowski M, Zeilinger A, Horne M A, et al. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys Rev Lett 1993, 71: 4287--4290. Google Scholar

[74] Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental Entanglement Swapping: Entangling Photons That Never Interacted. Phys Rev Lett 1998, 80: 3891--3894. Google Scholar

[75] Sciarrino F, Lombardi E, Milani G, et al. Delayed-choice entanglement swapping with vacuum-one-photon quantum states. Phys Rev A 2002, 66: 024309. Google Scholar

[76] de Riedmatten H, Marcikic I, van Houwelingen J A W, et al. Long-distance entanglement swapping with photons from separated sources. Phys Rev A 2005, 71: 050302. Google Scholar

[77] Tan S M. Confirming entanglement in continuous variable quantum teleportation. Phys Rev A 1999, 60: 2752--2758. Google Scholar

[78] van Loock P, Braunstein S L. Unconditional teleportation of continuous-variable entanglement. Phys Rev A 1999, 61: 010302. Google Scholar

[79] Jia X, Su X, Pan Q, et al. Experimental Demonstration of Unconditional Entanglement Swapping for Continuous Variables. Phys Rev Lett 2004, 93: 250503. Google Scholar

[80] Takei N, Yonezawa H, Aoki T, et al. High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys Rev Lett, 2005, 94: 220502. Google Scholar

[81] Yang L, Liu Y C, Li Y S. Quantum teleportation of particles in an environment. Chin Phys B 2020, 29: 060301. Google Scholar

[82] Takeda S, Fuwa M, van Loock P, et al. Entanglement Swapping between Discrete and Continuous Variables. Phys Rev Lett 2015, 114: 100501. Google Scholar

[83] Andersen U L, Neergaard-Nielsen J S, van Loock P, et al. Hybrid discrete- and continuous-variable quantum information. Nat Phys 2015, 11: 713--719. Google Scholar

[84] Su X, Tian C, Deng X, et al. Quantum Entanglement Swapping between Two Multipartite Entangled States. Phys Rev Lett 2016, 117: 240503. Google Scholar

[85] Tian C, Han D, Wang Y, et al. Connecting two Gaussian cluster states by quantum entanglement swapping. Opt Express 2018, 26: 29159--29169. Google Scholar

[86] Wu Y, Zhou J, Gong X, et al. Continuous-variable measurement-device-independent multipartite quantum communication. Phys Rev A 2016, 93: 022325. Google Scholar

[87] Wang Y, Tian C, Su Q, et al. Measurement-device-independent quantum secret sharing and quantum conference based on Gaussian cluster state. Sci China Inf Sci 2019, 62: 072501. Google Scholar

[88] Tomamichel M, Renner R. Uncertainty Relation for Smooth Entropies. Phys Rev Lett 2011, 106: 110506. Google Scholar

[89] Branciard C, Cavalcanti E G, Walborn S P, et al. One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering. Phys Rev A 2012, 85: 010301. Google Scholar

[90] Walk N, Hosseini S, Geng J, et al. Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution. Optica 2016, 3: 634--642. Google Scholar

[91] Gehring T, H?ndchen V, Duhme J, et al. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks. Nat Commun 2015, 6: 8795. Google Scholar

[92] Gallego R, Aolita L. Resource theory of steering. Phys Rev X, 2015, 5: 041008. Google Scholar

[93] Reid M D. Signifying quantum benchmarks for qubit teleportation and secure quantum communication using Einstein-Podolsky-Rosen steering inequalities. Phys Rev A 2013, 88: 062338. Google Scholar

[94] He Q, Rosales-Zárate L, Adesso G, et al. Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering. Phys Rev Lett 2015, 115: 180502. Google Scholar

[95] Chiu C Y, Lambert N, Liao T L, et al. No-cloning of quantum steering. npj Quantum Inf 2016, 2: 16020. Google Scholar

[96] Piani M, Watrous J. Necessary and Sufficient Quantum Information Characterization of Einstein-Podolsky-Rosen Steering. Phys Rev Lett 2015, 114: 060404. Google Scholar

[97] Opanchuk B, Arnaud L, Reid M D. Detecting faked continuous-variable entanglement using one-sided device-independent entanglement witnesses. Phys Rev A 2014, 89: 062101. Google Scholar

[98] He Q Y, Gong Q H, Reid M D. Classifying Directional Gaussian Entanglement, Einstein-Podolsky-Rosen Steering, and Discord. Phys Rev Lett 2015, 114: 060402. Google Scholar

[99] Kogias I, Lee A R, Ragy S, et al. Quantification of Gaussian Quantum Steering. Phys Rev Lett 2015, 114: 060403. Google Scholar

[100] Rosales-Zárate L, Teh R Y, Kiesewetter S. Decoherence of Einstein-Podolsky-Rosen steering. J Opt Soc Am B, 2015, 32: A82 CrossRef ADS arXiv Google Scholar

[101] H?ndchen V, Eberle T, Steinlechner S. Observation of one-way Einstein-Podolsky-Rosen steering. Nat Photon, 2012, 6: 596-599 CrossRef Google Scholar

[102] Wollmann S, Walk N, Bennet A J. Observation of Genuine One-Way Einstein-Podolsky-Rosen Steering. Phys Rev Lett, 2016, 116: 160403 CrossRef ADS arXiv Google Scholar

[103] Sun K, Ye X J, Xu J S. Experimental Quantification of Asymmetric Einstein-Podolsky-Rosen Steering. Phys Rev Lett, 2016, 116: 160404 CrossRef ADS arXiv Google Scholar

[104] Armstrong S, Wang M, Teh R Y. Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks. Nat Phys, 2015, 11: 167-172 CrossRef ADS arXiv Google Scholar

[105] Cavalcanti D, Skrzypczyk P, Aguilar G H. Detection of entanglement in asymmetric quantum networks and multipartite quantum steering. Nat Commun, 2015, 6: 7941 CrossRef ADS arXiv Google Scholar

[106] Li C M, Chen K, Chen Y N. Genuine High-Order Einstein-Podolsky-Rosen Steering. Phys Rev Lett, 2015, 115: 010402 CrossRef ADS arXiv Google Scholar

[107] Deng X, Xiang Y, Tian C. Demonstration of Monogamy Relations for Einstein-Podolsky-Rosen Steering in Gaussian Cluster States. Phys Rev Lett, 2017, 118: 230501 CrossRef ADS arXiv Google Scholar

[108] Qin Z, Deng X, Tian C. Manipulating the direction of Einstein-Podolsky-Rosen steering. Phys Rev A, 2017, 95: 052114 CrossRef ADS arXiv Google Scholar

[109] Wang M, Qin Z, Su X. Swapping of Gaussian Einstein-Podolsky-Rosen steering. Phys Rev A, 2017, 95: 052311 CrossRef ADS arXiv Google Scholar

[110] Wang M, Qin Z, Wang Y. Einstein-Podolsky-Rosen-steering swapping between two Gaussian multipartite entangled states. Phys Rev A, 2017, 96: 022307 CrossRef ADS Google Scholar

[111] Wang M, Deng X, Qin Z. Einstein-Podolsky-Rosen steering in Gaussian weighted graph states. Phys Rev A, 2019, 100: 022328 CrossRef ADS Google Scholar

[112] Fleischhauer M, Lukin M D. Dark-State Polaritons in Electromagnetically Induced Transparency. Phys Rev Lett, 2000, 84: 5094-5097 CrossRef ADS arXiv Google Scholar

[113] Jensen K, Wasilewski W, Krauter H. Quantum memory for entangled continuous-variable states. Nat Phys, 2011, 7: 13-16 CrossRef ADS Google Scholar

[114] Zhang H, Jin X M, Yang J. Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nat Photon, 2011, 5: 628-632 CrossRef ADS Google Scholar

[115] Ding D S, Zhou Z Y, Shi B S. Single-photon-level quantum image memory based on cold atomic ensembles. Nat Commun, 2013, 4: 2527 CrossRef ADS arXiv Google Scholar

[116] Reim K F, Nunn J, Lorenz V O. Towards high-speed optical quantum memories. Nat Photon, 2010, 4: 218-221 CrossRef ADS arXiv Google Scholar

[117] Ding D S, Zhang W, Zhou Z Y. Raman quantum memory of photonic polarized entanglement. Nat Photon, 2015, 9: 332-338 CrossRef ADS Google Scholar

[118] Cho Y W, Campbell G T, Everett J L. Highly efficient optical quantum memory with long coherence time in cold atoms. Optica, 2016, 3: 100 CrossRef ADS Google Scholar

[119] Saglamyurek E, Sinclair N, Jin J. Broadband waveguide quantum memory for entangled photons. Nature, 2011, 469: 512-515 CrossRef ADS arXiv Google Scholar

[120] Zhong M, Hedges M P, Ahlefeldt R L. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature, 2015, 517: 177-180 CrossRef ADS Google Scholar

[121] Yang T S, Zhou Z Q, Hua Y L. Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory. Nat Commun, 2018, 9: 3407 CrossRef ADS arXiv Google Scholar

[122] Xu Z, Wu Y, Tian L. Long Lifetime and High-Fidelity Quantum Memory of Photonic Polarization Qubit by Lifting Zeeman Degeneracy. Phys Rev Lett, 2013, 111: 240503 CrossRef ADS arXiv Google Scholar

[123] Nicolas A, Veissier L, Giner L. A quantum memory for orbital angular momentum photonic qubits. Nat Photon, 2014, 8: 234-238 CrossRef ADS arXiv Google Scholar

[124] Vernaz-Gris P, Huang K, Cao M. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nat Commun, 2018, 9: 363 CrossRef ADS arXiv Google Scholar

[125] Honda K, Akamatsu D, Arikawa M. Storage and Retrieval of a Squeezed Vacuum. Phys Rev Lett, 2008, 100: 093601 CrossRef ADS arXiv Google Scholar

[126] Appel J, Figueroa E, Korystov D. Quantum Memory for Squeezed Light. Phys Rev Lett, 2008, 100: 093602 CrossRef ADS arXiv Google Scholar

[127] Ding D S, Zhang W, Zhou Z Y. Quantum Storage of Orbital Angular Momentum Entanglement in an Atomic Ensemble. Phys Rev Lett, 2015, 114: 050502 CrossRef ADS arXiv Google Scholar

[128] Yan Z, Wu L, Jia X. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles. Nat Commun, 2017, 8: 718 CrossRef ADS arXiv Google Scholar

[129] Yuan Z S, Chen Y A, Zhao B. Experimental demonstration of a BDCZ quantum repeater node. Nature, 2008, 454: 1098-1101 CrossRef ADS arXiv Google Scholar

[130] Chen L K, Yong H L, Xu P. Experimental nested purification for a linear optical quantum repeater. Nat Photon, 2017, 11: 695-699 CrossRef ADS Google Scholar

[131] Kalb N, Reiserer A A, Humphreys P C. Entanglement distillation between solid-state quantum network nodes. Science, 2017, 356: 928-932 CrossRef ADS arXiv Google Scholar

[132] Bhaskar M K, Riedinger R, Machielse B. Experimental demonstration of memory-enhanced quantum communication. Nature, 2020, 580: 60-64 CrossRef ADS arXiv Google Scholar

[133] Yu Y, Ma F, Luo X Y. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature, 2020, 578: 240-245 CrossRef ADS Google Scholar

[134] Azuma K, Tamaki K, Lo H K. All-photonic quantum repeaters. Nat Commun, 2015, 6: 6787 CrossRef ADS arXiv Google Scholar

[135] Buterakos D, Barnes E, Economou S E. Deterministic generation of all-photonic quantum repeaters from solid-state emitters. Phys Rev X, 2017, 7: 041023. Google Scholar

[136] Li Z D, Zhang R, Yin X F. Experimental quantum repeater without quantum memory. Nat Photonics, 2019, 13: 644-648 CrossRef ADS arXiv Google Scholar

[137] Hasegawa Y, Ikuta R, Matsuda N. Experimental time-reversed adaptive Bell measurement towards all-photonic quantum repeaters. Nat Commun, 2019, 10: 378 CrossRef ADS Google Scholar

[138] Ren J G, Xu P, Yong H L. Ground-to-satellite quantum teleportation. Nature, 2017, 549: 70-73 CrossRef ADS arXiv Google Scholar

[139] Zhang Q Y, Xu P, Zhu S N. Quantum photonic network on chip. Chin Phys B, 2018, 27: 054207 CrossRef ADS Google Scholar

[140] Wang J, Paesani S, Ding Y. Multidimensional quantum entanglement with large-scale integrated optics. Science, 2018, 360: 285-291 CrossRef Google Scholar

[141] Qiang X, Zhou X, Wang J. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat Photon, 2018, 12: 534-539 CrossRef ADS arXiv Google Scholar

[142] Feng L T, Zhang M, Xiong X, et al. On-chip transverse-mode entangled photon pair source. npj Quantum Information, 2019, 5: 2. Google Scholar

[143] Llewellyn D, Ding Y, Faruque I I. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat Phys, 2020, 16: 148-153 CrossRef ADS arXiv Google Scholar

[144] Masada G, Miyata K, Politi A. Continuous-variable entanglement on a chip. Nat Photon, 2015, 9: 316-319 CrossRef ADS arXiv Google Scholar

[145] Lenzini F, Janousek J, Thearle O. Integrated photonic platform for quantum information with continuous variables. Sci Adv, 2018, 4: eaat9331 CrossRef ADS arXiv Google Scholar

[146] Otterpohl A, Sedlmeir F, Vogl U. Squeezed vacuum states from a whispering gallery mode resonator. Optica, 2019, 6: 1375 CrossRef ADS arXiv Google Scholar

[147] Tang H, Di Franco C, Shi Z Y. Experimental quantum fast hitting on hexagonal graphs. Nat Photon, 2018, 12: 754-758 CrossRef ADS arXiv Google Scholar

  • Figure 1

    (Color online) Schematic of quantum networks. (a) Local all optical quantum network, which consists of a quantum server (QS) and several users; (b) local hybrid quantum network containing quantum memory (QM); (c) the schematic of quantum Internet consisting of a quantum repeater, which enables long distance quantum communication.

  • Figure 2

    (Color online) Schematic of connecting two local quantum networks by quantum entanglement swapping. Two local quantum networks A and B are built by distributing two multipartite entangled states in several quantum nodes, respectively. By performing joint measurement on two optical modes coming from two local quantum networks and feedforward of measurement results to other quantum nodes, two quantum networks are emerged into one quantum network with new multipartite entangled states.

  • Figure 3

    (Color online) Schematic of establishing quantum entanglement among three atomic ensembles. Quantum entanglement of three optical modes is transferred to three atomic ensembles.

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号