logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 60, Issue 4: 047511(2017) https://doi.org/10.1007/s11433-017-9006-8

Modulation of ultrafast laser-induced magnetization precession in BiFeO3-coated La0.67Sr0.33MnO3 thin films

More info
  • ReceivedJan 18, 2017
  • AcceptedJan 23, 2017
  • PublishedJan 24, 2017
PACS numbers

Abstract

The ultrafast laser-excited magnetization dynamics of ferromagnetic (FM) La0.67Sr0.33MnO3 (LSMO) thin films with BiFeO3 (BFO) coating layers grown by laser molecular beam epitaxy are investigated using the optical pump-probe technique. Uniform magnetization precessions are observed in the films under an applied external magnetic field by measuring the time-resolved magneto-optical Kerr effect. The magnetization precession frequencies of the LSMO thin films with the BFO coating layers are lower than those of uncoated LSMO films, which is attributed to the suppression of the anisotropy field induced by the exchange interaction at the interface between the antiferromagnetic order of BFO and the FM order of LSMO.


Acknowledgment

This work was supported by the National Key Basic Research Program of China (Grant Nos. 2014CB921001, and 2013CB328706), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH020), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 11574365, 11474349, 11674385, 11404380, 91436101, and 61275060).


References

[1] van Kampen M., Kohlhepp J. T., de Jonge W. J. M., Koopmans B., Coehoorn R.. J. Phys.-Condens. Matter, 2005, 17: 6823 CrossRef ADS Google Scholar

[2] Choi G. M., Min B. C., Lee K. J., Cahill D. G.. Nat. Commun., 2014, 5: 4334 CrossRef ADS Google Scholar

[3] Kimel A. V., Kirilyuk A., Usachev P. A., Pisarev R. V., Balbashov A. M., Rasing T.. Nature, 2005, 435: 655 CrossRef ADS Google Scholar

[4] Koopmans B., Malinowski G., Dalla Longa F., Steiauf D., Fähnle M., Roth T., Cinchetti M., Aeschlimann M.. Nat. Mater., 2009, 9: 259 CrossRef ADS Google Scholar

[5] Němec P., Rozkotová E., Tesařová N., Trojánek F., De Ranieri E., Olejník K., Zemen J., Novák V., Cukr M., Malý P., Jungwirth T.. Nat. Phys., 2012, 8: 411 CrossRef ADS arXiv Google Scholar

[6] Stamm C., Kachel T., Pontius N., Mitzner R., Quast T., Holldack K., Khan S., Lupulescu C., Aziz E. F., Wietstruk M., Dürr H. A., Eberhardt W.. Nat. Mater., 2007, 6: 740 CrossRef ADS Google Scholar

[7] Tesařová N., Němec P., Rozkotová E., Zemen J., Janda T., Butkovičová D., Trojánek F., Olejník K., Novák V., Malý P., Jungwirth T.. Nat. Photon., 2013, 7: 492 CrossRef ADS arXiv Google Scholar

[8] van Kampen M., Jozsa C., Kohlhepp J. T., LeClair P., Lagae L., de Jonge W. J. M., Koopmans B.. Phys. Rev. Lett., 2002, 88: 227201 CrossRef ADS Google Scholar

[9] Kirilyuk A., Kimel A. V., Rasing T.. Rev. Mod. Phys., 2010, 82: 2731 CrossRef ADS Google Scholar

[10] Koopmans B., van Kampen M., Kohlhepp J. T., de Jonge W. J. M.. Phys. Rev. Lett., 2000, 85: 844 CrossRef ADS Google Scholar

[11] Ma X., Fang F., Li Q., Zhu J., Yang Y., Wu Y. Z., Zhao H. B., Lüpke G.. Nat. Commun., 2015, 6: 8800 CrossRef ADS Google Scholar

[12] Ogasawara T., Matsubara M., Tomioka Y., Kuwata-Gonokami M., Okamoto H., Tokura Y.. Phys. Rev. B, 2003, 68: 180407 CrossRef ADS Google Scholar

[13] Othonos A.. J. Appl. Phys., 1998, 83: 1789 CrossRef ADS Google Scholar

[14] Zhang Q., Nurmikko A. V., Anguelouch A., Xiao G., Gupta A.. Phys. Rev. Lett., 2002, 89: 177402 CrossRef ADS Google Scholar

[15] Zhao H. B., Talbayev D., Yang Q. G., Lüpke G., Hanbicki A. T., Li C. H., van ’t Erve O. M. J., Kioseoglou G., Jonker B. T.. Appl. Phys. Lett., 2005, 86: 152512 CrossRef ADS Google Scholar

[16] Chakhalian J., Freeland J. W., Habermeier H. U., Cristiani G., Khaliullin G., van Veenendaal M., Keimer B.. Science, 2007, 318: 1114 CrossRef ADS Google Scholar

[17] Heber J.. Nature, 2009, 459: 28 CrossRef Google Scholar

[18] Ohtomo A., Hwang H. Y.. Nature, 2004, 427: 423 CrossRef ADS Google Scholar

[19] Ueda K., Tabata H., Kawai T.. Science, 1998, 280: 1064 CrossRef ADS Google Scholar

[20] Calderón M. J., Liang S., Yu R., Salafranca J., Dong S., Yunoki S., Brey L., Moreo A., Dagotto E.. Phys. Rev. B, 2011, 84: 024422 CrossRef ADS arXiv Google Scholar

[21] Wu S. M., Cybart S. A., Yi D., Parker J. M., Ramesh R., Dynes R. C.. Phys. Rev. Lett., 2013, 110: 067202 CrossRef ADS Google Scholar

[22] Wu S. M., Cybart S. A., Yu P., Rossell M. D., Zhang J. X., Ramesh R., Dynes R. C.. Nat. Mater., 2010, 9: 756 CrossRef ADS Google Scholar

[23] Yu P., Lee J. S., Okamoto S., Rossell M. D., Huijben M., Yang C. H., He Q., Zhang J. X., Yang S. Y., Lee M. J., Ramasse Q. M., Erni R., Chu Y. H., Arena D. A., Kao C. C., Martin L. W., Ramesh R.. Phys. Rev. Lett., 2010, 105: 027201 CrossRef ADS arXiv Google Scholar

[24] Razdolski I., Subkhangulov R. R., Gheorghe D. G., Bern F., Vrejoiu I., Kimel A. V., Kirilyuk A., Ziese M., Rasing T.. Phys. Status Solidi RRL, 2015, 9: 583 CrossRef ADS Google Scholar

[25] Talbayev D., Zhao H., Lüpke G., Venimadhav A., Li Q.. Phys. Rev. B, 2006, 73: 014417 CrossRef ADS Google Scholar

[26] Zhao H. B., Talbayev D., Ma X., Ren Y. H., Venimadhav A., Li Q., Lüpke G.. Phys. Rev. Lett., 2011, 107: 207205 CrossRef ADS Google Scholar

[27] Bozovic I., Schneider M., Xu Y., Sobolewski R., Ren Y. H., Lüpke G., Demsar J., Taylor A. J., Onellion M.. Phys. Rev. B, 2004, 69: 132503 CrossRef ADS Google Scholar

[28] Ren Y. H., Trigo M., Merlin R., Adyam V., Li Q.. Appl. Phys. Lett., 2007, 90: 251918 CrossRef ADS Google Scholar

[29] Perna P., Rodrigo C., Jiménez E., Teran F. J., Mikuszeit N., Méchin L., Camarero J., Miranda R.. J. Appl. Phys., 2011, 110: 013919 CrossRef ADS arXiv Google Scholar

  • Figure 1

    (Color online) XRD patterns of the uncoated LSMO thin films and the LSMO films coated with 3- and 20-nm-thick BFO layers, grown on STO substrates. The diffraction peaks are labeled for the three compounds.

  • Figure 2

    (Color online) (a) Transient Kerr rotation of the uncoated LSMO film under various external magnetic fields. (b) Fourier transform of the signals shown in (a), exhibiting the distinct peaks of two different oscillation modes.

  • Figure 3

    (Color online) Transient Kerr rotation signals of the uncoated LSMO film and the LSMO films coated with 3- and 20-nm-thick BFO layers under external magnetic fields of 0.2 T (a), 0.4 T (b), and 0.6 T (c). The Fourier transforms of the signals shown in (a), (b), and (c) for external magnetic fields of 0.2 T (d), 0.4 T (e), and 0.6 T (f), respectively.

  • Figure 4

    (Color online) Schematic of the magnetization precession.

  • Figure 5

    (Color online) Magnetization curve measured in the plane direction.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1