logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61, Issue 1: 016801(2018) https://doi.org/10.1007/s11433-017-9105-x

Chemical vapor deposition growth of two-dimensional heterojunctions

More info
  • ReceivedMay 31, 2017
  • AcceptedSep 14, 2017
  • PublishedNov 13, 2017
PACS numbers

Abstract

The properties of two-dimensional (2D) layered materials with atom-smooth surface and special interlayer van der Waals coupling are different from those of traditional materials. Due to the absence of dangling bonds from the clean surface of 2D layered materials, the lattice mismatch influences slightly on the growth of 2D heterojunctions, thus providing a flexible design strategy. 2D heterojunctions have attracted extensive attention because of their excellent performance in optoelectronics, spintronics, and valleytronics. The transfer method was utilized for the fabrication of 2D heterojunctions during the early stage of fundamental research on these materials. This method, however, has limited practical applications. Therefore, chemical vapor deposition (CVD) method was recently developed and applied for the preparation of 2D heterojunctions. The CVD method is a naturally down-top growth strategy that yields 2D heterojunctions with sharp interfaces. Moreover, this method effectively reduces the introduction of contaminants to the fabricated heterojunctions. Nevertheless, the CVD-growth method is sensitive to variations in growth conditions. In this review article, we attempt to provide a comprehensive overview of the influence of growth conditions on the fabrication of 2D heterojunctions through the direct CVD method. We believe that elucidating the effects of growth conditions on the CVD method is necessary to help control and improve the efficiency of the large-scale fabrication of 2D heterojunctions for future applications in integrated circuits.


Funded by

and the CAS/SAFEA International Partnership Program for Creative Research Teams.

National Key Research and Development Program of China(2017YFA0207500)

National Natural Science Foundation of China(61622406)

“Hundred Talents Program” of Chinese Academy of Sciences(CAS)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61622406, 11674310, 61571415, and 51502283), the National Key Research and Development Program of China (Grant Nos. 2017YFA0207500, and 2016YFB0700700), “Hundred Talents Program” of Chinese Academy of Sciences (CAS), and the CAS/SAFEA International Partnership Program for Creative Research Teams.


References

[1] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A.. Science, 2004, 306: 666 CrossRef PubMed ADS Google Scholar

[2] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A.. Nature, 2005, 438: 197 CrossRef PubMed ADS Google Scholar

[3] Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K.. Rev. Mod. Phys., 2009, 81: 109 CrossRef ADS arXiv Google Scholar

[4] Schwierz F.. Nat. Nanotech., 2010, 5: 487 CrossRef PubMed ADS Google Scholar

[5] Bonaccorso F., Sun Z., Hasan T., Ferrari A. C.. Nat. Photon., 2010, 4: 611 CrossRef ADS arXiv Google Scholar

[6] Balandin A. A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C. N.. Nano Lett., 2008, 8: 902 CrossRef PubMed ADS Google Scholar

[7] Lee C., Wei X., Kysar J. W., Hone J.. Science, 2008, 321: 385 CrossRef PubMed ADS Google Scholar

[8] Bolotin K. I., Sikes K. J., Jiang Z., Klima M., Fudenberg G., Hone J., Kim P., Stormer H. L.. Solid State Commun., 2008, 146: 351 CrossRef ADS arXiv Google Scholar

[9] Morozov S. V., Novoselov K. S., Katsnelson M. I., Schedin F., Elias D. C., Jaszczak J. A., Geim A. K.. Phys. Rev. Lett., 2008, 100: 016602 CrossRef PubMed ADS arXiv Google Scholar

[10] Geim A. K., Novoselov K. S.. Nat. Mater., 2007, 6: 183 CrossRef PubMed ADS Google Scholar

[11] Zhang H., Liu C. X., Qi X. L., Dai X., Fang Z., Zhang S. C.. Nat. Phys., 2009, 5: 438 CrossRef ADS Google Scholar

[12] Lima E. N., Schmidt T. M., Nunes R. W.. Nano Lett., 2016, 16: 4025 CrossRef PubMed ADS arXiv Google Scholar

[13] Tsen A. W., Hunt B., Kim Y. D., Yuan Z. J., Jia S., Cava R. J., Hone J., Kim P., Dean C. R., Pasupathy A. N.. Nat. Phys., 2015, 12: 208 CrossRef ADS arXiv Google Scholar

[14] Butler S. Z., Hollen S. M., Cao L., Cui Y., Gupta J. A., Gutiérrez H. R., Heinz T. F., Hong S. S., Huang J., Ismach A. F., Johnston-Halperin E., Kuno M., Plashnitsa V. V., Robinson R. D., Ruoff R. S., Salahuddin S., Shan J., Shi L., Spencer M. G., Terrones M., Windl W., Goldberger J. E.. ACS Nano, 2013, 7: 2898 CrossRef PubMed Google Scholar

[15] Molle A., Goldberger J., Houssa M., Xu Y., Zhang S. C., Akinwande D.. Nat. Mater., 2017, 16: 163 CrossRef PubMed ADS Google Scholar

[16] Mannix A. J., Kiraly B., Hersam M. C., Guisinger N. P.. Nat. Rev. Chem., 2017, 1: 0014 CrossRef Google Scholar

[17] Chhowalla M., Shin H. S., Eda G., Li L. J., Loh K. P., Zhang H.. Nat. Chem, 2013, 5: 263 CrossRef PubMed ADS Google Scholar

[18] Li S. L., Tsukagoshi K., Orgiu E., Samorì P.. Chem. Soc. Rev., 2016, 45: 118 CrossRef PubMed Google Scholar

[19] Ji Q., Zhang Y., Shi J., Sun J., Zhang Y., Liu Z.. Adv. Mater., 2016, 28: 6207 CrossRef PubMed Google Scholar

[20] Shi J., Ji Q., Liu Z., Zhang Y.. Adv. Energy Mater., 2016, 6: 4345 CrossRef Google Scholar

[21] Li L. H., Chen Y.. Adv. Funct. Mater., 2016, 26: 2594 CrossRef Google Scholar

[22] Prete M. S., Mosca Conte A., Gori P., Bechstedt F., Pulci O.. Appl. Phys. Lett., 2017, 110: 012103 CrossRef Google Scholar

[23] Osada M., Sasaki T.. J. Mater. Chem., 2009, 19: 2503 CrossRef Google Scholar

[24] Ma R., Sasaki T.. Acc. Chem. Res., 2015, 48: 136 CrossRef PubMed Google Scholar

[25] Anasori B., Lukatskaya M. R., Gogotsi Y.. Nat. Rev. Mater., 2017, 2: 16098 CrossRef ADS Google Scholar

[26] Naguib M., Mochalin V. N., Barsoum M. W., Gogotsi Y.. Adv. Mater., 2014, 26: 992 CrossRef PubMed Google Scholar

[27] Liu H., Neal A. T., Zhu Z., Luo Z., Xu X., Tománek D., Ye P. D.. ACS Nano, 2014, 8: 4033 CrossRef PubMed Google Scholar

[28] Tai G., Hu T., Zhou Y., Wang X., Kong J., Zeng T., You Y., Wang Q.. Angew. Chem. Int. Ed., 2015, 54: 15473 CrossRef PubMed Google Scholar

[29] Fleurence A., Friedlein R., Ozaki T., Kawai H., Wang Y., Yamada-Takamura Y.. Phys. Rev. Lett., 2012, 108: 24 CrossRef PubMed ADS Google Scholar

[30] Li L., Lu S. Z., Pan J., Qin Z., Wang Y. Q., Wang Y., Cao G. Y., Du S., Gao H. J.. Adv. Mater., 2014, 26: 4838 CrossRef Google Scholar

[31] Zhu F. F., Chen W. J., Xu Y., Gao C. L., Guan D. D., Liu C. H., Qian D., Zhang S. C., Jia J. F.. Nat. Mater., 2015, 14: 1020 CrossRef PubMed ADS arXiv Google Scholar

[32] Zhang S., Yan Z., Li Y., Chen Z., Zeng H.. Angew. Chem. Int. Ed., 2015, 54: 3112 CrossRef PubMed Google Scholar

[33] Ji J., Song X., Liu J., Yan Z., Huo C., Zhang S., Su M., Liao L., Wang W., Ni Z., Hao Y., Zeng H.. Nat. Commun., 2016, 7: 13352 CrossRef PubMed ADS Google Scholar

[34] van der Zande A. M., Huang P. Y., Chenet D. A., Berkelbach T. C., You Y. M., Lee G. H., Heinz T. F., Reichman D. R., Muller D. A., Hone J. C.. Nat. Mater., 2013, 12: 554 CrossRef PubMed ADS arXiv Google Scholar

[35] Najmaei S., Liu Z., Zhou W., Zou X., Shi G., Lei S., Yakobson B. I., Idrobo J. C., Ajayan P. M., Lou J.. Nat. Mater., 2013, 12: 754 CrossRef PubMed ADS Google Scholar

[36] Zhao C., Xu Z., Wang H., Wei J., Wang W., Bai X., Wang E.. Adv. Funct. Mater., 2014, 24: 5985 CrossRef Google Scholar

[37] Tsipas P., Kassavetis S., Tsoutsou D., Xenogiannopoulou E., Golias E., Giamini S. A., Grazianetti C., Chiappe D., Molle A., Fanciulli M., Dimoulas A.. Appl. Phys. Lett., 2013, 103: 251605 CrossRef ADS Google Scholar

[38] Ong W. J., Tan L. L., Ng Y. H., Yong S. T., Chai S. P.. Chem. Rev., 2016, 116: 7159 CrossRef PubMed Google Scholar

[39] Al Balushi Z. Y., Wang K., Ghosh R. K., Vilá R. A., Eichfeld S. M., Caldwell J. D., Qin X., Lin Y. C., DeSario P. A., Stone G., Subramanian S., Paul D. F., Wallace R. M., Datta S., Redwing J. M., Robinson J. A.. Nat. Mater., 2016, 15: 1166 CrossRef PubMed ADS Google Scholar

[40] Wang L., Yuan L., Chen K., Zhang Y., Deng Q., Du S., Huang Q., Zheng L., Zhang J., Chai Z., Barsoum M. W., Wang X., Shi W.. ACS Appl. Mater. Interf., 2016, 8: 16396 CrossRef Google Scholar

[41] Urbankowski P., Anasori B., Makaryan T., Er D., Kota S., Walsh P. L., Zhao M., Shenoy V. B., Barsoum M. W., Gogotsi Y.. Nanoscale, 2016, 8: 11385 CrossRef PubMed ADS Google Scholar

[42] Lu A. Y., Zhu H., Xiao J., Chuu C. P., Han Y., Chiu M. H., Cheng C. C., Yang C. W., Wei K. H., Yang Y., Wang Y., Sokaras D., Nordlund D., Yang P., Muller D. A., Chou M. Y., Zhang X., Li L. J.. Nat. Nanotech., 2017, 12: 74 CrossRef Google Scholar

[43] Wang Q. H., Kalantar-Zadeh K., Kis A., Coleman J. N., Strano M. S.. Nat. Nanotech., 2012, 7: 699 CrossRef PubMed ADS Google Scholar

[44] Akinwande D., Petrone N., Hone J.. Nat. Commun., 2014, 5: 5678 CrossRef PubMed ADS Google Scholar

[45] Peng B., Ang P. K., Loh K. P.. Nano Today, 2015, 10: 128 CrossRef Google Scholar

[46] Duan X., Wang C., Pan A., Yu R., Duan X.. Chem. Soc. Rev., 2015, 44: 8859 CrossRef PubMed Google Scholar

[47] Peng L., Zhu Y., Chen D., Ruoff R. S., Yu G.. Adv. Energ. Mater., 2016, 6: 1600025 CrossRef Google Scholar

[48] Feng Q., Yan F., Luo W., Wang K.. Nanoscale, 2016, 8: 2686 CrossRef PubMed ADS arXiv Google Scholar

[49] Luo W., Cao Y., Hu P., Cai K., Feng Q., Yan F., Yan T., Zhang X., Wang K.. Adv. Opt. Mater., 2015, 3: 1418 CrossRef Google Scholar

[50] Cao Y., Cai K., Hu P., Zhao L., Yan T., Luo W., Zhang X., Wu X., Wang K., Zheng H.. Sci. Rep., 2015, 5: 8130 CrossRef PubMed ADS arXiv Google Scholar

[51] Ling X., Lin Y., Ma Q., Wang Z., Song Y., Yu L., Huang S., Fang W., Zhang X., Hsu A. L., Bie Y., Lee Y. H., Zhu Y., Wu L., Li J., Jarillo-Herrero P., Dresselhaus M., Palacios T., Kong J.. Adv. Mater., 2016, 28: 2322 CrossRef PubMed Google Scholar

[52] Wang H., Liu F., Fu W., Fang Z., Zhou W., Liu Z.. Nanoscale, 2014, 6: 12250 CrossRef PubMed ADS Google Scholar

[53] Liu Y., Weiss N. O., Duan X., Cheng H. C., Huang Y., Duan X.. Nat. Rev. Mater., 2016, 1: 16042 CrossRef ADS Google Scholar

[54] Jariwala D., Marks T. J., Hersam M. C.. Nat. Mater., 2016, 16: 170 CrossRef PubMed ADS arXiv Google Scholar

[55] Vu Q. A., Shin Y. S., Kim Y. R., Nguyen V. L., Kang W. T., Kim H., Luong D. H., Lee I. M., Lee K., Ko D. S., Heo J., Park S., Lee Y. H., Yu W. J.. Nat. Commun., 2016, 7: 12725 CrossRef PubMed ADS Google Scholar

[56] Lin Y. C., Ghosh R. K., Addou R., Lu N., Eichfeld S. M., Zhu H., Li M. Y., Peng X., Kim M. J., Li L. J., Wallace R. M., Datta S., Robinson J. A.. Nat. Commun., 2015, 6: 7311 CrossRef PubMed ADS arXiv Google Scholar

[57] Tsai M. L., Su S. H., Chang J. K., Tsai D. S., Chen C. H., Wu C. I., Li L. J., Chen L. J., He J. H.. ACS Nano, 2014, 8: 8317 CrossRef PubMed Google Scholar

[58] Kang J., Tongay S., Zhou J., Li J., Wu J.. Appl. Phys. Lett., 2013, 102: 012111 CrossRef ADS Google Scholar

[59] Terrones H., López-Urías F., Terrones M.. Sci. Rep., 2013, 3: 1549 CrossRef PubMed ADS Google Scholar

[60] Zhang C. X., Cheng G., Nie Y. F., Min K. A., Liang C. P., Oh Y. J., Zhang H. J., Wang W. H., Hong S., Colombo L., Wallace R. M., Cho K.. 2D Mater., 2017, 4: 015026 CrossRef Google Scholar

[61] Hong X., Kim J., Shi S. F., Zhang Y., Jin C., Sun Y., Tongay S., Wu J., Zhang Y., Wang F.. Nat. Nanotech., 2014, 9: 682 CrossRef PubMed ADS arXiv Google Scholar

[62] Ceballos F., Bellus M. Z., Chiu H. Y., Zhao H.. ACS Nano, 2014, 8: 12717 CrossRef PubMed Google Scholar

[63] Zhang J., Wang J., Chen P., Sun Y., Wu S., Jia Z., Lu X., Yu H., Chen W., Zhu J., Xie G., Yang R., Shi D., Xu X., Xiang J., Liu K., Zhang G.. Adv. Mater., 2016, 28: 1950 CrossRef PubMed Google Scholar

[64] Li Y., Qin J. K., Xu C. Y., Cao J., Sun Z. Y., Ma L. P., Hu P. A., Ren W., Zhen L.. Adv. Funct. Mater., 2016, 26: 4319 CrossRef Google Scholar

[65] Wang K., Huang B., Tian M., Ceballos F., Lin M. W., Mahjouri-Samani M., Boulesbaa A., Puretzky A. A., Rouleau C. M., Yoon M., Zhao H., Xiao K., Duscher G., Geohegan D. B.. ACS Nano, 2016, 10: 6612 CrossRef Google Scholar

[66] Puretzky A. A., Liang L., Li X., Xiao K., Wang K., Mahjouri-Samani M., Basile L., Idrobo J. C., Sumpter B. G., Meunier V., Geohegan D. B.. ACS Nano, 2015, 9: 6333 CrossRef Google Scholar

[67] Lui C. H., Ye Z., Ji C., Chiu K. C., Chou C. T., Andersen T. I., Means-Shively C., Anderson H., Wu J. M., Kidd T., Lee Y. H., He R.. Phys. Rev. B, 2015, 91: 165403 CrossRef ADS arXiv Google Scholar

[68] Zhang X., Han W. P., Wu J. B., Milana S., Lu Y., Li Q. Q., Ferrari A. C., Tan P. H.. Phys. Rev. B, 2013, 87: 115413 CrossRef ADS arXiv Google Scholar

[69] Zhao Y., Luo X., Li H., Zhang J., Araujo P. T., Gan C. K., Wu J., Zhang H., Quek S. Y., Dresselhaus M. S., Xiong Q.. Nano Lett., 2013, 13: 1007 CrossRef PubMed ADS arXiv Google Scholar

[70] Yu Y., Hu S., Su L., Huang L., Liu Y., Jin Z., Purezky A. A., Geohegan D. B., Kim K. W., Zhang Y., Cao L.. Nano Lett., 2015, 15: 428 CrossRef Google Scholar

[71] Wang Y., Li L., Wang C., Wang T.. J. Nanopart. Res., 2016, 18: 2 CrossRef ADS Google Scholar

[72] Pezeshki A., Shokouh S. H. H., Nazari T., Oh K., Im S.. Adv. Mater., 2016, 28: 3216 CrossRef PubMed Google Scholar

[73] Long M., Liu E., Wang P., Gao A., Xia H., Luo W., Wang B., Zeng J., Fu Y., Xu K., Zhou W., Lv Y., Yao S., Lu M., Chen Y., Ni Z., You Y., Zhang X., Qin S., Shi Y., Hu W., Xing D., Miao F.. Nano Lett., 2016, 16: 2254 CrossRef PubMed ADS arXiv Google Scholar

[74] Zhang K., Zhang T., Cheng G., Li T., Wang S., Wei W., Zhou X., Yu W., Sun Y., Wang P., Zhang D., Zeng C., Wang X., Hu W., Fan H. J., Shen G., Chen X., Duan X., Chang K., Dai N.. ACS Nano, 2016, 10: 3852 CrossRef Google Scholar

[75] Zhang W., Chuu C. P., Huang J. K., Chen C. H., Tsai M. L., Chang Y. H., Liang C. T., Chen Y. Z., Chueh Y. L., He-Hau J., Chou M. Y., Li L. J.. Sci. Rep., 2015, 4: 3826 CrossRef PubMed ADS arXiv Google Scholar

[76] Yang J., Huo N., Li Y., Jiang X. W., Li T., Li R., Lu F., Fan C., Li B., Nørgaard K., Laursen B. W., Wei Z., Li J., Li S. S.. Adv. Electron. Mater., 2015, 1: 1500267 CrossRef Google Scholar

[77] Deng Y., Luo Z., Conrad N. J., Liu H., Gong Y., Najmaei S., Ajayan P. M., Lou J., Xu X., Ye P. D.. ACS Nano, 2014, 8: 8292 CrossRef PubMed Google Scholar

[78] Jeon P. J., Min S. W., Kim J. S., Raza S. R. A., Choi K., Lee H. S., Lee Y. T., Hwang D. K., Choi H. J., Im S.. J. Mater. Chem. C, 2015, 3: 2751 CrossRef Google Scholar

[79] Huang L., Li J.. Appl. Phys. Lett., 2016, 108: 083101 CrossRef ADS Google Scholar

[80] Nourbakhsh A., Zubair A., Sajjad R. N., Tavakkoli K. G. A., Chen W., Fang S., Ling X., Kong J., Dresselhaus M. S., Kaxiras E., Berggren K. K., Antoniadis D., Palacios T.. Nano Lett., 2016, 16: 7798 CrossRef PubMed ADS Google Scholar

[81] Roy T., Tosun M., Cao X., Fang H., Lien D. H., Zhao P., Chen Y. Z., Chueh Y. L., Guo J., Javey A.. ACS Nano, 2015, 9: 2071 CrossRef PubMed Google Scholar

[82] Yan R., Fathipour S., Han Y., Song B., Xiao S., Li M., Ma N., Protasenko V., Muller D. A., Jena D., Xing H. G.. Nano Lett., 2015, 15: 5791 CrossRef PubMed ADS arXiv Google Scholar

[83] Rivera P., Seyler K. L., Yu H., Schaibley J. R., Yan J., Mandrus D. G., Yao W., Xu X.. Science, 2016, 351: 688 CrossRef PubMed ADS Google Scholar

[84] Schaibley J. R., Rivera P., Yu H., Seyler K. L., Yan J., Mandrus D. G., Taniguchi T., Watanabe K., Yao W., Xu X.. Nat. Commun., 2016, 7: 13747 CrossRef PubMed ADS arXiv Google Scholar

[85] Pierucci D., Henck H., Avila J., Balan A., Naylor C. H., Patriarche G., Dappe Y. J., Silly M. G., Sirotti F., Johnson A. T. C., Asensio M. C., Ouerghi A.. Nano Lett., 2016, 16: 4054 CrossRef PubMed ADS Google Scholar

[86] Li Y., Huang L., Zhong M., Wei Z., Li J.. Adv. Mater. Technol., 2016, 1: 1600001 CrossRef Google Scholar

[87] Reina A., Jia X., Ho J., Nezich D., Son H., Bulovic V., Dresselhaus M. S., Kong J.. Nano Lett., 2009, 9: 30 CrossRef PubMed ADS Google Scholar

[88] Dean C. R., Young A. F., Meric I., Lee C., Wang L., Sorgenfrei S., Watanabe K., Taniguchi T., Kim P., Shepard K. L., Hone J.. Nat. Nanotech, 2010, 5: 722 CrossRef PubMed ADS arXiv Google Scholar

[89] Lu Z., Sun L., Xu G., Zheng J., Zhang Q., Wang J., Jiao L.. ACS Nano, 2016, 10: 5237 CrossRef Google Scholar

[90] Andres C. G., Michele B., Rianda M., Vibhor S., Laurens J., Herre S. J. V. D. Z., Gary A. S.. 2D Mater., 2014, 1: 011002 CrossRef Google Scholar

[91] Jung Y., Shen J., Sun Y., Cha J. J.. ACS Nano, 2014, 8: 9550 CrossRef PubMed Google Scholar

[92] Gong Y., Lin J., Wang X., Shi G., Lei S., Lin Z., Zou X., Ye G., Vajtai R., Yakobson B. I., Terrones H., Terrones M., Tay B. K., Lou J., Pantelides S. T., Liu Z., Zhou W., Ajayan P. M.. Nat. Mater., 2014, 13: 1135 CrossRef PubMed ADS Google Scholar

[93] Li M. Y., Shi Y., Cheng C. C., Lu L. S., Lin Y. C., Tang H. L., Tsai M. L., Chu C. W., Wei K. H., He-Hau J., Chang W. H., Suenaga K., Li L. J.. Science, 2015, 349: 524 CrossRef PubMed ADS Google Scholar

[94] Xiang Q., Yu J., Jaroniec M.. J. Am. Chem. Soc., 2012, 134: 6575 CrossRef PubMed Google Scholar

[95] Hou D., Zhou W., Liu X., Zhou K., Xie J., Li G., Chen S.. Electrochim. Acta, 2015, 166: 26 CrossRef Google Scholar

[96] Wang Z., Ma L., Chen W., Huang G., Chen D., Wang L., Lee J. Y.. RSC Adv., 2013, 3: 21675 CrossRef Google Scholar

[97] Obraztsov A. N.. Nat. Nanotech., 2009, 4: 212 CrossRef PubMed ADS Google Scholar

[98] Kim K. S., Zhao Y., Jang H., Lee S. Y., Kim J. M., Kim K. S., Ahn J. H., Kim P., Choi J. Y., Hong B. H.. Nature, 2009, 457: 706 CrossRef PubMed ADS Google Scholar

[99] Zhang Q., Xiao X., Zhao R., Lv D., Xu G., Lu Z., Sun L., Lin S., Gao X., Zhou J., Jin C., Ding F., Jiao L.. Angew. Chem. Int. Ed., 2015, 54: 8957 CrossRef PubMed Google Scholar

[100] Kong D., Wang H., Cha J. J., Pasta M., Koski K. J., Yao J., Cui Y.. Nano Lett., 2013, 13: 1341 CrossRef PubMed ADS Google Scholar

[101] Li Y., Zhang J., Zheng G., Sun Y., Hong S. S., Xiong F., Wang S., Lee H. R., Cui Y.. ACS Nano, 2015, 9: 10916 CrossRef Google Scholar

[102] Duan X., Wang C., Shaw J. C., Cheng R., Chen Y., Li H., Wu X., Tang Y., Zhang Q., Pan A., Jiang J., Yu R., Huang Y., Duan X.. Nat. Nanotech., 2014, 9: 1024 CrossRef PubMed ADS Google Scholar

[103] Gong Y., Lei S., Ye G., Li B., He Y., Keyshar K., Zhang X., Wang Q., Lou J., Liu Z., Vajtai R., Zhou W., Ajayan P. M.. Nano Lett., 2015, 15: 6135 CrossRef PubMed ADS Google Scholar

[104] Tan C., Cao X., Wu X. J., He Q., Yang J., Zhang X., Chen J., Zhao W., Han S., Nam G. H., Sindoro M., Zhang H.. Chem. Rev., 2017, 117: 6225 CrossRef PubMed Google Scholar

[105] Yan K., Fu L., Peng H., Liu Z.. Acc. Chem. Res., 2013, 46: 2263 CrossRef PubMed Google Scholar

[106] Gulbransen E. A., Andrew K. F., Brassart F. A.. J. Electrochem. Soc., 1963, 110: 952 CrossRef Google Scholar

[107] Tromp R. M., Hannon J. B.. Phys. Rev. Lett., 2009, 102: 10 CrossRef PubMed ADS Google Scholar

[108] Heo H., Sung J. H., Jin G., Ahn J. H., Kim K., Lee M. J., Cha S., Choi H., Jo M. H.. Adv. Mater., 2015, 27: 3803 CrossRef PubMed Google Scholar

[109] Samad L., Bladow S. M., Ding Q., Zhuo J., Jacobberger R. M., Arnold M. S., Jin S.. ACS Nano, 2016, 10: 7039 CrossRef Google Scholar

[110] Liu L., Park J., Siegel D. A., McCarty K. F., Clark K. W., Deng W., Basile L., Idrobo J. C., Li A. P., Gu G.. Science, 2014, 343: 163 CrossRef PubMed ADS Google Scholar

[111] Zhang T., Jiang B., Xu Z., Mendes R. G., Xiao Y., Chen L., Fang L., Gemming T., Chen S., Rümmeli M. H., Fu L.. Nat. Commun., 2016, 7: 13911 CrossRef PubMed ADS Google Scholar

[112] Li B., Huang L., Zhong M., Li Y., Wang Y., Li J., Wei Z.. Adv. Electron. Mater., 2016, 2: 1600298 CrossRef Google Scholar

[113] Dumcenco D., Ovchinnikov D., Marinov K., Lazić P., Gibertini M., Marzari N., Sanchez O. L., Kung Y. C., Krasnozhon D., Chen M. W., Bertolazzi S., Gillet P., Fontcuberta i Morral A., Radenovic A., Kis A.. ACS Nano, 2015, 9: 4611 CrossRef Google Scholar

[114] Chen J., Zhao X., Tan S. J. R., Xu H., Wu B., Liu B., Fu D., Fu W., Geng D., Liu Y., Liu W., Tang W., Li L., Zhou W., Sum T. C., Loh K. P.. J. Am. Chem. Soc., 2017, 139: 1073 CrossRef PubMed Google Scholar

[115] Heo H., Sung J. H., Ahn J. H., Ghahari F., Taniguchi T., Watanabe K., Kim P., Jo M. H.. Adv. Electron. Mater., 2017, 3: 1600375 CrossRef Google Scholar

[116] Schroeder M., Wolf D. E.. Surf. Sci., 1997, 375: 129 CrossRef ADS Google Scholar

[117] Shi J., Zhang X., Ma D., Zhu J., Zhang Y., Guo Z., Yao Y., Ji Q., Song X., Zhang Y., Li C., Liu Z., Zhu W., Zhang Y.. ACS Nano, 2015, 9: 4017 CrossRef Google Scholar

[118] Li H., Zhang Q., Duan X., Wu X., Fan X., Zhu X., Zhuang X., Hu W., Zhou H., Pan A., Duan X.. J. Am. Chem. Soc., 2015, 137: 5284 CrossRef PubMed Google Scholar

[119] Huang C., Wu S., Sanchez A. M., Peters J. J. P., Beanland R., Ross J. S., Rivera P., Yao W., Cobden D. H., Xu X.. Nat. Mater., 2014, 13: 1096 CrossRef PubMed Google Scholar

[120] Zhang X. Q., Lin C. H., Tseng Y. W., Huang K. H., Lee Y. H.. Nano Lett., 2015, 15: 410 CrossRef PubMed ADS Google Scholar

[121] Zheng S., Sun L., Yin T., Dubrovkin A. M., Liu F., Liu Z., Shen Z. X., Fan H. J.. Appl. Phys. Lett., 2015, 106: 063113 CrossRef ADS Google Scholar

[122] Chen K., Wan X., Xie W., Wen J., Kang Z., Zeng X., Chen H., Xu J.. Adv. Mater., 2015, 27: 6431 CrossRef PubMed Google Scholar

[123] Fu L., Sun Y., Wu N., Mendes R. G., Chen L., Xu Z., Zhang T., Rümmeli M. H., Rellinghaus B., Pohl D., Zhuang L., Fu L.. ACS Nano, 2016, 10: 2063 CrossRef Google Scholar

[124] Xue Y., Zhang Y., Liu Y., Liu H., Song J., Sophia J., Liu J., Xu Z., Xu Q., Wang Z., Zheng J., Liu Y., Li S., Bao Q.. ACS Nano, 2016, 10: 573 CrossRef Google Scholar

[125] Choudhary N., Park J., Hwang J. Y., Chung H. S., Dumas K. H., Khondaker S. I., Choi W., Jung Y.. Sci. Rep., 2016, 6: 25456 CrossRef PubMed ADS Google Scholar

[126] Li X., Lin M. W., Lin J., Huang B., Puretzky A. A., Ma C., Wang K., Zhou W., Pantelides S. T., Chi M., Kravchenko I., Fowlkes J., Rouleau C. M., Geohegan D. B., Xiao K.. Sci. Adv., 2016, 2: e1501882 CrossRef PubMed ADS Google Scholar

[127] Bogaert K., Liu S., Chesin J., Titow D., Gradečak S., Garaj S.. Nano Lett., 2016, 16: 5129 CrossRef PubMed ADS Google Scholar

[128] Yoo Y., Degregorio Z. P., Johns J. E.. J. Am. Chem. Soc., 2015, 137: 14281 CrossRef PubMed Google Scholar

[129] Levendorf M. P., Kim C. J., Brown L., Huang P. Y., Havener R. W., Muller D. A., Park J.. Nature, 2012, 488: 627 CrossRef PubMed ADS Google Scholar

[130] Mahjouri-Samani M., Lin M. W., Wang K., Lupini A. R., Lee J., Basile L., Boulesbaa A., Rouleau C. M., Puretzky A. A., Ivanov I. N., Xiao K., Yoon M., Geohegan D. B.. Nat. Commun., 2015, 6: 7749 CrossRef PubMed ADS Google Scholar

[131] Woods J. M., Jung Y., Xie Y., Liu W., Liu Y., Wang H., Cha J. J.. ACS Nano, 2016, 10: 2004 CrossRef Google Scholar

[132] Zhao M., Ye Y., Han Y., Xia Y., Zhu H., Wang S., Wang Y., Muller D. A., Zhang X.. Nat. Nanotech., 2016, 11: 954 CrossRef PubMed ADS Google Scholar

[133] Miwa J. A., Dendzik M., Grønborg S. S., Bianchi M., Lauritsen J. V., Hofmann P., Ulstrup S.. ACS Nano, 2015, 9: 6502 CrossRef Google Scholar

[134] Eichfeld S. M., Hossain L., Lin Y. C., Piasecki A. F., Kupp B., Birdwell A. G., Burke R. A., Lu N., Peng X., Li J., Azcatl A., McDonnell S., Wallace R. M., Kim M. J., Mayer T. S., Redwing J. M., Robinson J. A.. ACS Nano, 2015, 9: 2080 CrossRef PubMed Google Scholar

[135] Chung J. W., Dai Z. R., Ohuchi F. S.. J. Cryst. Growth, 1998, 186: 137 CrossRef ADS Google Scholar

[136] Hofmann W. K.. J. Mater. Sci., 1988, 23: 3981 CrossRef ADS Google Scholar

[137] Ugeda M. M., Bradley A. J., Shi S. F., da Jornada F. H., Zhang Y., Qiu D. Y., Ruan W., Mo S. K., Hussain Z., Shen Z. X., Wang F., Louie S. G., Crommie M. F.. Nat. Mater., 2014, 13: 1091 CrossRef PubMed ADS arXiv Google Scholar

[138] Zhang Y., Jeon M., Rich L. J., Hong H., Geng J., Zhang Y., Shi S., Barnhart T. E., Alexandridis P., Huizinga J. D., Seshadri M., Cai W., Kim C., Lovell J. F.. Nat. Nanotech., 2014, 9: 631 CrossRef PubMed ADS Google Scholar

[139] Prando G.. Nat. Nanotech., 2017, 12: 191 CrossRef PubMed ADS Google Scholar

[140] Molina-Mendoza A. J., Giovanelli E., Paz W. S., Niño M. A., Island J. O., Evangeli C., Aballe L., Foerster M., van der Zant H. S. J., Rubio-Bollinger G., Agraït N., Palacios J. J., Pérez E. M., Castellanos-Gomez A.. Nat. Commun., 2017, 8: 14409 CrossRef PubMed ADS arXiv Google Scholar

[141] Velický M., Toth P. S., Rakowski A. M., Rooney A. P., Kozikov A., Woods C. R., Mishchenko A., Fumagalli L., Yin J., Zólyomi V., Georgiou T., Haigh S. J., Novoselov K. S., Dryfe R. A. W.. Nat. Commun., 2017, 8: 14410 CrossRef PubMed ADS Google Scholar

[142] Hong H. K., Jo J., Hwang D., Lee J., Kim N. Y., Son S., Kim J. H., Jin M. J., Jun Y. C., Erni R., Kwak S. K., Yoo J. W., Lee Z.. Nano Lett., 2017, 17: 120 CrossRef PubMed ADS Google Scholar

[143] Wang Z., He X., Zhang X. X., Alshareef H. N.. Adv. Mater., 2016, 28: 9133 CrossRef PubMed Google Scholar

[144] Bacaksiz C., Dominguez A., Rubio A., Senger R. T., Sahin H.. Phys. Rev. B, 2017, 95: 7 CrossRef ADS arXiv Google Scholar

[145] Lee G. H., Lee C. H., van der Zande A. M., Han M., Cui X., Arefe G., Nuckolls C., Heinz T. F., Hone J., Kim P.. APL Mater., 2014, 2: 092511 CrossRef ADS Google Scholar

[146] Wu B., Zhao Y., Nan H., Yang Z., Zhang Y., Zhao H., He D., Jiang Z., Liu X., Li Y., Shi Y., Ni Z., Wang J., Xu J. B., Wang X.. Nano Lett., 2016, 16: 3754 CrossRef PubMed ADS Google Scholar

[147] Liu X., Gu J., Ding K., Fan D., Hu X., Tseng Y. W., Lee Y. H., Menon V., Forrest S. R.. Nano Lett., 2017, 17: 3176 CrossRef PubMed ADS Google Scholar

[148] Cheng H. C., Wang G., Li D., He Q., Yin A., Liu Y., Wu H., Ding M., Huang Y., Duan X.. Nano Lett., 2016, 16: 367 CrossRef PubMed ADS arXiv Google Scholar

[149] Bettis Homan S., Sangwan V. K., Balla I., Bergeron H., Weiss E. A., Hersam M. C.. Nano Lett., 2017, 17: 164 CrossRef PubMed ADS arXiv Google Scholar

  • Figure 1

    (Color online) (a) Vertical and lateral heterostructures of 2D materials; (b) atomic structures of the main three types of 2D materials; (c) elements that constitute Xenes, MX2, and nitrides are marked by different signs on the periodic table, and 2D oxides and MXenes are individually listed in the lower table.

  • Figure 2

    (Color online) (a) Type II band alignment of MoS2/WS2 heterojunctions; (b) schematic of different vibrational modes of heterojunctions; Raman spectra (c), low-frequency Raman spectra (d), PL spectra (e), and PL intensity map (f) of different stacking bilayers [63]. Copyright@2015 John Wiley and Sons. (g) Schematic of a WS2/graphene heterojunction. In this heterojunction, interlayer relaxation can be tuned by an electric field supplied by an Au electrode in ion gel [64]. Copyright@2016 John Wiley and Sons. (h) I-V curves with negative differential resistance at room temperature [56]. Copyright@2016 Nature Publishing Group. (i) Structure of a novel two-terminal floating-gate memory device based on MoS2/h-BN heterojunctions [55]. Copyright@2016 Nature Publishing Group.

  • Figure 3

    (Color online) Refs. [88] (a) and [89] (b) are the process schematics of the wet-transfer method with PMMA and PVP/PVA, respectively. Copyright@2010 Nature Publishing Group. Reprinted with permission from ref. [89]. Copyright@2016 American Chemical Society. (c) Process schematic of the all-dry transfer method; (d) HRTEM image of the special vertically aligned MoS2/WS2 heterostructures [91]. Reprinted with permission from ref. [91]. Copyright@2014 American Chemical Society. Refs. [92] (e) and [93] (f) are heterojunction interfaces obtained through the one-step and two-step CVD strategies, respectively. Copyright@2014 Nature Publishing Group and Copyright@2015 the American Association for the Advancement of Science.

  • Figure 4

    (Color online) (a) and (b) are optical images of vertical and lateral WS2/MoS2 heterojunctions fabricated via the CVD process shown in (c) [92]. Copyright 2014 Nature Publishing Group. (d) Nucleation model for vertical heterostructures and lateral heterojunctions; (e) dependence of Gibbs free-energy curves on the radius of the nucleus in which the energy barriers of nucleation located in the maximum value can be found; (f) relationship of nucleation rate between the surfaces of first-growth 2D layered materials and SiO2 substrates. This relationship determines whether the growth of the heterojunction is vertical or lateral. (g) and (h) are optical images of the vertical and lateral heterojunctions reported in ref. [104], respectively [108]. Copyright@2015 John Wiley and Sons. (i) Optical images of the vertical heterojunctions reported in ref. [99]. (j) STEM image of the independent little dot in the central region of (i); the corresponding maps of WSe2 and MoSe2 are respectively shown in (k) and (l) [103]. Reprinted with permission from ref. [103]. Copyright@2015 American Chemical Society. (m) and (n) reveal the changes in Raman spectra and PL in accordance with the numbers of MoS2 layers on SnS2 [109]. Reprinted with permission from ref. [109]. Copyright@2016 American Chemical Society.

  • Figure 5

    (a) and (b) provide the growth illustration, optical image, and AFM image of vertical growth on SiO2 substrates; (c) and (d) provide the growth illustration, optical image, and AFM image of vertical growth on h-BN substrates; (e) illustration of different lattice constants, which influence the growth pattern of the second-growth Sb2Te3, for first-growth Bi2Te3 on SiO2 and h-BN; (f) and (g) are the growth schematic illustrations of the growth of second-layer Sb2Te3 on SiO2 and h-BN substrates, respectively [115]. Copyright@2017 John Wiley and Sons.

  • Figure 6

    (Color online) (a) Optical image of the vertical ReS2/WS2 heterojunction; (b) and (c) are the corresponding Raman maps of the E2g mode of ReS2 and WS2 and indicate the almost complete coverage of vertical heterojunctions; (d) Raman spectra of the ReS2/WS2 heterojunction. The four separate peaks correspond to peaks in individual ReS2 and WS2. (e) HRTEM image of the vertical ReS2/WS2 heterojunction with Moiré pattern; (f) fast Fourier transform shown in (e) revealing a twist angle of approximately 5.6° between the ReS2 lattice and WS2 lattice; (g) schematic of the growth of twinned vertical ReS2/WS2 heterojunctions [111]. Copyright@2016 Nature Publishing Group.

  • Figure 7

    (Color online) (a) and (b) are the SEM images of lateral MoSe2/WSe2 heterojunctions with different morphologies; (c) growth processes of lateral MoSe2/WSe2 heterojunctions; (d) change curves of vapor pressure for Mo and W. Vapor pressure decides the growth opportunities of MoSe2 and WSe2 [119]. Copyright@2014 Nature Publishing Group. (e) Illustration of a specially designed CVD-growth equipment [120]. Reprinted with permission from ref. [120]. Copyright@2015 American Chemical Society.

  • Figure 8

    (Color online) (a) Growth process of WS2/MoS2 heterojunctions with special core-shell nanowires as precursors; (b) TEM image of the WO3x/MoO3x core-shell nanowire; (c) optical image of WS2/MoS2 heterojunctions; (d) Raman spectra of WS2/MoS2 heterojunctions with different twist angles; (e) interface of WS2/MoS2 heterojunctions; (f) statistical graph of twist angles for approximately 200 WS2/MoS2 heterojunctions; (g) energy required to form WS2/MoS2 heterojunctions with different twist angles; the theoretically calculated required energy agrees with the experimentally obtained result shown in (f) [99]. Copyright@2015 John Wiley and Sons. (h) Growth process of MoS2/h-BN heterojunctions; (i) SEM image of MoS2/h-BN heterojunctions [123]. Reprinted with permission from ref. [123]. Copyright@2016 American Chemical Society. (j) Optical image of the MoS2/WS2 heterojunction device via directly sulfureting patterned films [124]. Reprinted with permission from ref. [124]. Copyright@2016 American Chemical Society. (k) Schematic for the growth process via the direct sulfurization of the designed films; (l) Optical image of the centimeter-scale MoS2/WS2 heterostructure film [125]. Copyright@2016 Nature Publishing Group.

  • Figure 9

    (Color online) (a) HRTEM image of an interface with large lattice mismatch between MoS2 and graphene; (b) diffractogram of the mixed region in (a) [51]. Copyright@2017 John Wiley and Sons. (c) STEM image of the interface of GaSe and MoSe2; (d) structural illustration of the interface shown in (c); (e) growth schematic of GaSe/MoSe2 heterojunctions. The image reveals that the morphology of the GaSe/MoSe2 heterojunctions could be manipulated by controlling the flow rate of the carrier gas [126]. Copyright@2016 the American Association for the Advancement of Science.

  • Figure 10

    (Color online) (a) AFM image of monolayer MoS2 without H2 during the MoS2 growth process, (c) is its corresponding height line profile along the dotted white line; (b) AFM image with the introduction of H2, (d) is its corresponding height line profile. A clean edge in the MoS2 triangle domain can be observed after the introduction of H2. (e) and (f) are the SEM images of lateral and vertical WS2/MoS2 heterojunctions utilizing MoS2 in (b) and (a) as the bottom layers, respectively [128]. Reprinted with permission from ref. [128]. Copyright@2015 American Chemical Society. Refs. [129] (g), [130] (h), and [131] (i) are the three types of growth processes for the fabrication of programmable heterojunctions. Reprinted with permission from ref. [129]. Copyright@2012 Nature Publishing Group. Reprinted with permission from refs. [130,131]. Copyright@2016 American Chemical Society.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1