SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 60, Issue 12: 120314(2017) https://doi.org/10.1007/s11433-017-9113-4

NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature

More info
  • ReceivedOct 9, 2017
  • AcceptedOct 11, 2017
  • PublishedOct 12, 2017
PACS numbers


The rapid development of superconducting nanowire single-photon detectors over the past decade has led to numerous advances in quantum information technology. The record for the best system detection efficiency at an incident photon wavelength of 1550 nm is 93%. This performance was attained from a superconducting nanowire single-photon detector made of amorphous WSi; such detectors are usually operated at sub-Kelvin temperatures. In this study, we first demonstrate superconducting nanowire single-photon detectors made of polycrystalline NbN with system detection efficiency of 90.2% for 1550-nm-wavelength photons at 2.1 K, accessible with a compact cryocooler. The system detection efficiency saturated at 92.1% when the temperature was lowered to 1.8 K. We expect the results lighten the practical and high performance superconducting nanowire single-photon detectors to quantum information and other high-end applications.

Funded by

Strategic Priority Research Program (B) of the Chinese Academy of Sciences(XDB04010200)

National Natural Science Foundation of China(91121022)

National Key R&D Program of China(2017YFA0304000)

Science and Technology Commission of Shanghai Municipality(16JC1400402)


This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0304000), Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04010200), the National Natural Science Foundation of China (Grant Nos. 91121022, 61401441, and 61401443), and the Science and Technology Commission of Shanghai Municipality (Grant No. 16JC1400402). The authors would like to thank M. Wang, Z. J. Li, and B. Gao from SIMIT for technical support during the ultra-low temperature measurements.


The supporting information is available online at http://phys.scichina.com and http://link.springer.com/journal/11433. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Giustina M., Versteegh M. A. M., Wengerowsky S., Handsteiner J., Hochrainer A., Phelan K., Steinlechner F., Kofler J., Larsson J. Å., Abellán C., Amaya W., Pruneri V., Mitchell M. W., Beyer J., Gerrits T., Lita A. E., Shalm L. K., Nam S. W., Scheidl T., Ursin R., Wittmann B., Zeilinger A.. Phys. Rev. Lett., 2015, 115: 250401 CrossRef PubMed ADS arXiv Google Scholar

[2] Shalm L. K., Meyer-Scott E., Christensen B. G., Bierhorst P., Wayne M. A., Stevens M. J., Gerrits T., Glancy S., Hamel D. R., Allman M. S., Coakley K. J., Dyer S. D., Hodge C., Lita A. E., Verma V. B., Lambrocco C., Tortorici E., Migdall A. L., Zhang Y., Kumor D. R., Farr W. H., Marsili F., Shaw M. D., Stern J. A., Abellán C., Amaya W., Pruneri V., Jennewein T., Mitchell M. W., Kwiat P. G., Bienfang J. C., Mirin R. P., Knill E., Nam S. W.. Phys. Rev. Lett., 2015, 115: 250402 CrossRef PubMed ADS arXiv Google Scholar

[3] Sun Q. C., Mao Y. L., Chen S. J., Zhang W., Jiang Y. F., Zhang Y. B., Zhang W. J., Miki S., Yamashita T., Terai H., Jiang X., Chen T. Y., You L. X., Chen X. F., Wang Z., Fan J. Y., Zhang Q., Pan J. W.. Nat. Photon, 2016, 10: 671 CrossRef ADS Google Scholar

[4] Tang Y. L., Yin H. L., Chen S. J., Liu Y., Zhang W. J., Jiang X., Zhang L., Wang J., You L. X., Guan J. Y., Yang D. X., Wang Z., Liang H., Zhang Z., Zhou N., Ma X., Chen T. Y., Zhang Q., Pan J. W.. Phys. Rev. Lett., 2014, 113: 190501 CrossRef PubMed ADS arXiv Google Scholar

[5] Knill E., Laflamme R., Milburn G. J.. Nature, 2001, 409: 46 CrossRef PubMed Google Scholar

[6] R. H. Hadfield, G. Johansson, Superconducting Devices in Quantum Optics (Springer, Berlin, 2016). Google Scholar

[7] Zhang J., Itzler M. A., Zbinden H., Pan J. W.. Light Sci Appl, 2015, 4: e286 CrossRef Google Scholar

[8] Hu X., Cheng Y., Gu C., Zhu X., Liu H.. Sci. Bull., 2015, 60: 1980 CrossRef Google Scholar

[9] Lita A. E., Miller A. J., Nam S. W.. Opt. Express, 2008, 16: 3032 CrossRef ADS Google Scholar

[10] Marsili F., Verma V. B., Stern J. A., Harrington S., Lita A. E., Gerrits T., Vayshenker I., Baek B., Shaw M. D., Mirin R. P., Nam S. W.. Nat. Photon, 2013, 7: 210 CrossRef ADS arXiv Google Scholar

[11] Verma V. B., Korzh B., Bussières F., Horansky R. D., Dyer S. D., Lita A. E., Vayshenker I., Marsili F., Shaw M. D., Zbinden H., Mirin R. P., Nam S. W.. Opt. Express, 2015, 23: 33792 CrossRef ADS arXiv Google Scholar

[12] Dorenbos S. N., Forn-Díaz P., Fuse T., Verbruggen A. H., Zijlstra T., Klapwijk T. M., Zwiller V.. Appl. Phys. Lett., 2011, 98: 251102 CrossRef ADS Google Scholar

[13] Engel A., Aeschbacher A., Inderbitzin K., Schilling A., Il’in K., Hofherr M., Siegel M., Semenov A., Hübers H. W.. Appl. Phys. Lett., 2012, 100: 062601 CrossRef ADS arXiv Google Scholar

[14] Korneeva Y. P., Mikhailov M. Y., Pershin Y. P., Manova N. N., Divochiy A. V., Vakhtomin Y. B., Korneev A. A., Smirnov K. V., Sivakov A. G., Devizenko A. Y., Goltsman G. N.. Supercond. Sci. Technol., 2014, 27: 095012 CrossRef ADS arXiv Google Scholar

[15] Semenov A., Engel A., Hübers H. W., Il’in K., Siegel M.. Eur. Phys. J. B, 2005, 47: 495 CrossRef ADS Google Scholar

[16] Marsili F., Najafi F., Dauler E., Bellei F., Hu X., Csete M., Molnar R. J., Berggren K. K.. Nano Lett., 2011, 11: 2048 CrossRef PubMed ADS arXiv Google Scholar

[17] Renema J. J., Gaudio R., Wang Q., Zhou Z., Gaggero A., Mattioli F., Leoni R., Sahin D., de Dood M. J. A., Fiore A., van Exter M. P.. Phys. Rev. Lett., 2014, 112: 117604 CrossRef PubMed ADS Google Scholar

[18] Rosenberg D., Kerman A. J., Molnar R. J., Dauler E. A.. Opt. Express, 2013, 21: 1440 CrossRef ADS Google Scholar

[19] Yamashita T., Miki S., Terai H., Wang Z.. Opt. Express, 2013, 21: 27177 CrossRef ADS arXiv Google Scholar

[20] Chen S., You L., Zhang W., Yang X., Li H., Zhang L., Wang Z., Xie X.. Opt. Express, 2015, 23: 10786 CrossRef ADS arXiv Google Scholar

[21] Miki S., Yabuno M., Yamashita T., Terai H.. Opt. Express, 2017, 25: 6796 CrossRef ADS arXiv Google Scholar

[22] Zhang L., Wan C., Gu M., Xu R., Zhang S., Kang L., Chen J., Wu P.. Sci. Bull., 2015, 60: 1434 CrossRef Google Scholar

[23] Delacour C., Claudon J., Poizat J. P., Pannetier B., Bouchiat V., Espiau de Lamaestre R., Villegier J. C., Tarkhov M., Korneev A., Voronov B., Gol’tsman G.. Appl. Phys. Lett., 2007, 90: 191116 CrossRef ADS Google Scholar

[24] Semenov A., Günther B., Böttger U., Hübers H. W., Bartolf H., Engel A., Schilling A., Ilin K., Siegel M., Schneider R., Gerthsen D., Gippius N. A.. Phys. Rev. B, 2009, 80: 054510 CrossRef ADS Google Scholar

[25] Smirnov K., Vachtomin Y., Divochiy A., Antipov A., Goltsman G.. Appl. Phys. Express, 2015, 8: 022501 CrossRef ADS Google Scholar

[26] Polyakov S. V., Migdall A. L.. Opt. Express, 2007, 15: 1390 CrossRef ADS Google Scholar

[27] Bardeen J.. Rev. Mod. Phys., 1962, 34: 667 CrossRef ADS Google Scholar

[28] Henrich D., Reichensperger P., Hofherr M., Meckbach J. M., Il’in K., Siegel M., Semenov A., Zotova A., Vodolazov D. Y.. Phys. Rev. B, 2012, 86: 144504 CrossRef ADS arXiv Google Scholar

[29] Yin H. L., Chen T. Y., Yu Z. W., Liu H., You L. X., Zhou Y. H., Chen S. J., Mao Y., Huang M. Q., Zhang W. J., Chen H., Li M. J., Nolan D., Zhou F., Jiang X., Wang Z., Zhang Q., Wang X. B., Pan J. W.. Phys. Rev. Lett., 2016, 117: 190501 CrossRef PubMed ADS arXiv Google Scholar

[30] Wang X. L., Chen L. K., Li W., Huang H. L., Liu C., Chen C., Luo Y. H., Su Z. E., Wu D., Li Z. D., Lu H., Hu Y., Jiang X., Peng C. Z., Li L., Liu N. L., Chen Y. A., Lu C. Y., Pan J. W.. Phys. Rev. Lett., 2016, 117: 210502 CrossRef PubMed ADS arXiv Google Scholar

[31] Zhang W. J., You L. X., Li H., Huang J., Lv C. L., Zhang L., Liu X. Y., Wu J. J., Wang Z., Xie X. M.. arXiv Google Scholar

[32] Zadeh I. E., Johannes W. N. L., Gourgues R. B. M., Steinmetz V., Bulgarini G., Dobrovolskiy S. M., Zwiller V., Dorenbos S. N.. arXiv Google Scholar

  • Figure 1

    (Color online) (a) Schematic of the stack structure of SNSPD with DBR cavity. The region surrounded by the dashed line indicates the unit cell for the numerical simulation. The photons were illuminated to the nanowire from the top; (b) simulated absorption of devices as a function of the pitch with a fixed width (75 nm) and varied thicknesses (5, 6, 7, 8 nm), integrated with a half-cavity (DBR/NbN/Air); (c) simulated absorptions of devices as a function of the NbN thickness, with fixed width (75 nm) and pitch (140 nm); (d) wavelength dependence of absorptions for the half-cavity (black line) and full-cavity (red, and blue lines) devices, with a fixed width (75 nm) and pitch (140 nm). For the full-cavity designs, the front anti-reflection coating (ARC) was tuned through the use of various dielectric materials. The ARC introduced to the half-cavity design resulted in narrowing of the bandwidth.

  • Figure 2

    (Color online) (a) Schematic of a 7-nm-thick NbN SNSPD fabricated on a DBR/Si substrate. The DBR substrate comprised fifteen periodic Ta2O5/SiO2 bilayers deposited onto a Si wafer; (b) SEM image of the deposited nanowires. The diameter of the active area was 15 μm. The inset shows a high-magnification image of the nanowires, which exhibit a nominal 77-nm width and 64-nm spacing; (c) TEM image of a cross section of nanowires on the DBR mirror. The thicknesses of the SiO2 and Ta2O5 layer were approximately 265 and 180 nm, respectively; (d) high-magnification TEM image of the cross section of a single nanowire, whose measured thickness and width were approximately 8.0 and 76 nm, respectively. Because an existing oxidization layer with a thickness of approximately 1-2 nm was present on the top, the effective NbN thickness of the nanowire was estimated to be 7 nm.

  • Figure 3

    (Color online) Schematic of the ultralow-temperature measurement system used to characterize the SNSPDs. The SNSPDs are mounted on the plate of the mixing chamber; the plate can easily control the temperature from 16 mK to 8 K via the PID controller. Optical (represented by red lines) and electrical (represented by blue lines) components are indicated in the figure.

  • Figure 4

    (Color online) (a, b) SDEs and DCRs as functions of the bias current Ib for the 7- and 8-nm-thick, 75-nm-wide, 140-nm-pitch SNSPDs, as measured from 3 K to 16 mK. The filled and open symbols represent the SDE and the DCR, respectively. As the temperature was decreased, a clear saturation plateau emerged. Thinner NbN films resulted in wider saturation plateaus. The maximal SDEs of devices 02#F9 and 04#E4 were 92.1% and 91.7%, respectively, when the devices were operated at a DCR of 10 Hz; (c) temperature dependence of SDEs for devices 02#F9 and 04#E4 when the DCR was set to 10 Hz. For 02#F9, the SDE of 90.2% was obtained at 2.1 K (indicated by the green-dashed line), which is also the base temperature for a G-M cryocooler. The arrows indicate the onset temperature (Tos), where the SDE nearly saturated with decreasing temperature; (d) the switching current Isw as a function of temperature for devices 02#F9 and 04#E4.

  • Figure 5

    (Color online) SDE and DCR performance of SNSPD 02#F9 cooled by a 2.13-K G-M cryocooler. The SDE of 90.1% was obtained at a DCR of 10 Hz.

  • Figure 6

    (Color online) Wavelength dependence of the measured SDEs for devices 02#F9 (open circles) and 04#E4 (solid squares) in the wavelength range from 1200 to 1800 nm. The measured SDEs with error bars were recorded when the bias current was 14.0 and 21.0 μA, respectively, at a DCR of 10 Hz. The dashed lines show the simulated parallel (A//, magenta and blue) and perpendicular (A, green and red) polarized absorption values as functions of wavelength for 7- and 8-nm-thick nanowires, both with a 75-nm width and a 140-nm pitch.

  • Figure 7

    (Color online) (a) Timing jitter (Tj) measurement of two devices measured at 16 mK. For devices 02#F9 and 04#E4, the corresponding FWHM values of the Gaussian fits of Tj are 70.2 and 40.0 ps, respectively (see solid lines); (b) bias current dependence of Tj. The Tj increased to 79.0 and 46.0 ps at 2.1 K (indicated by arrows) because of the reduction of Ib to 13.0 and 19.5 μA for devices 02#F9 and 04#E4, respectively.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有