SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61, Issue 7: 070322(2018) https://doi.org/10.1007/s11433-018-9202-0

Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses

ZhengMing Liu1,2,3, Yang Liao1,*, ZhiWei Fang1,2,3, Wei Chu1, Ya Cheng1,4,5,6,*
More info
  • ReceivedMar 10, 2018
  • AcceptedMar 13, 2018
  • PublishedMar 20, 2018


There is no abstract available for this article.

Funded by

the National Natural Science Foundation of China(Grant,Nos.,61590934,61675220,1173409,11674340,61327902)

National Basic Research Program of China(Grant,No.,2014CB921303)

the Strategic Priority Research Program of Chinese Academy of Sciences(Grant,No.,XDB16000000)

the Key Research Program of Frontier Sciences

Chinese Academy of Sciences(Grant,No.,QYZDJ-SSW-SLH010)

and the Project of Shanghai Committee of Science and Technology(Grant,17JC1400400)


This work was supported by the National Natural Science Foundation of China (Grant Nos. 61590934, 61675220, 1173409, 11674340, and 61327902), the National Basic Research Program of China (Grant No. 2014CB921303), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB16000000), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH010), and the Project of Shanghai Committee of Science and Technology (Grant No. 17JC1400400).


[1] K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, San Diego, 2000). p. 417. Google Scholar

[2] Chen H., Corboliou V., Solntsev A. S., Choi D. Y., Vincenti M. A., de Ceglia D., de Angelis C., Lu Y., Neshev D. N.. Light Sci. Appl., 2017, 6: e17060 CrossRef Google Scholar

[3] Xiao Y. F., Gong Q.. Sci. Bull., 2016, 61: 185 CrossRef Google Scholar

[4] Jiang C., Zhai Z. Y., Cui Y. S., Chen G. B.. Sci. China-Phys. Mech. Astron., 2017, 60: 010311 CrossRef ADS Google Scholar

[5] Zhao G., Özdemir Ş. K., Wang T., Xu L., King E., Long G. L., Yang L.. Sci. Bull., 2017, 62: 875 CrossRef Google Scholar

[6] Liu X. F., Lei F., Gao M., Yang X., Qin G. Q., Long G. L.. Opt. Lett., 2016, 41: 3603 CrossRef ADS Google Scholar

[7] Davis K. M., Miura K., Sugimoto N., Hirao K.. Opt. Lett., 1996, 21: 1729 CrossRef ADS Google Scholar

[8] Itoh K., Watanabe W., Nolte S., Schaffer C. B.. MRS Bull., 2006, 31: 620 CrossRef Google Scholar

[9] Gattass R. R., Mazur E.. Nat. Photon, 2008, 2: 219 CrossRef ADS Google Scholar

[10] Sugioka K., Cheng Y.. Light Sci. Appl., 2014, 3: e149 CrossRef Google Scholar

[11] Chen F., de Aldana J. R. V.. Laser Photonics Rev., 2014, 8: 251 CrossRef Google Scholar

[12] Marshall G. D., Politi A., Matthews J. C. F., Dekker P., Ams M., Withford M. J., O'Brien J. L.. Opt. Express, 2009, 17: 12546 CrossRef ADS arXiv Google Scholar

[13] Taccheo S., della Valle G., Osellame R., Cerullo G., Chiodo N., Laporta P., Svelto O., Killi A., Morgner U., Lederer M., Kopf D.. Opt. Lett., 2004, 29: 2626 CrossRef ADS Google Scholar

[14] Bellouard Y., Said A. A., Bado P.. Opt. Express, 2005, 13: 6635 CrossRef ADS Google Scholar

[15] Osellame R., Hoekstra H. J. W. M., Cerullo G., Pollnau M.. Laser Photon. Rev., 2011, 5: 442 CrossRef Google Scholar

[16] Eaton S. M., Ng M. L., Osellame R., Herman P. R.. J. Non-Cryst. Solids, 2011, 357: 2387 CrossRef ADS Google Scholar

[17] Martinez-Vazquez R., Osellame R., Cerullo G., Ramponi R., Svelto O.. Opt. Express, 2007, 15: 12628 CrossRef ADS Google Scholar

[18] A. Streltsov, N. Borrelli, J. Dickinson, T. J. Kiczenski, S. Logunov, and J. Schroeder, Proc. SPIE 7366, 736611 (2009). Google Scholar

[19] Rodenas A., Kar A. K.. Opt. Express, 2011, 19: 17820 CrossRef ADS Google Scholar

[20] Arriola A., Gross S., Jovanovic N., Charles N., Tuthill P. G., Olaizola S. M., Fuerbach A., Withford M. J.. Opt. Express, 2013, 21: 2978 CrossRef ADS arXiv Google Scholar

[21] Pätzold W. M., Demircan A., Morgner U.. Opt. Express, 2017, 25: 263 CrossRef ADS Google Scholar

[22] Nasu Y., Kohtoku M., Hibino Y.. Opt. Lett., 2005, 30: 723 CrossRef ADS Google Scholar

[23] Salter P. S., Jesacher A., Spring J. B., Metcalf B. J., Thomas-Peter N., Simmonds R. D., Langford N. K., Walmsley I. A., Booth M. J.. Opt. Lett., 2012, 37: 470 CrossRef ADS Google Scholar

[24] Ams M., Marshall G. D., Withford M. J.. Opt. Express, 2006, 14: 13158 CrossRef ADS Google Scholar

[25] Yang W., Kazansky P. G., Shimotsuma Y., Sakakura M., Miura K., Hirao K.. Appl. Phys. Lett., 2008, 93: 171109 CrossRef ADS Google Scholar

[26] Fernandes L. A., Grenier J. R., Herman P. R., Aitchison J. S., Marques P. V. S.. Opt. Express, 2012, 20: 24103 CrossRef ADS Google Scholar

[27] Bellouard Y., Champion A., McMillen B., Mukherjee S., Thomson R. R., Pépin C., Gillet P., Cheng Y.. Optica, 2016, 3: 1285 CrossRef Google Scholar

[28] Streltsov A. M., Borrelli N. F.. J. Opt. Soc. Am. B, 2002, 19: 2496 CrossRef ADS Google Scholar

[29] A. W. Snyder, and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983), p. 181. Google Scholar

[30] Liao Y., Qi J., Wang P., Chu W., Wang Z., Qiao L., Cheng Y.. Sci. Rep., 2016, 6: 28790 CrossRef PubMed ADS arXiv Google Scholar

  • Figure 1

    (Color online) (a) The 3D configuration of the waveguide and modification structures, the insets show the cross sections of the waveguide and BLSW. Scale bar: 30 μm. (b) A top view micrograph of a section of curved waveguide sandwiched by a pair of BLSWs.

  • Figure 2

    (Color online) Bright field (a) and polarized light microscopy ((b), (c)) images of the BLSWs with different layers. The separation between two inner walls is fixed to be 22 μm (center to center), and the layer number of modification tracks ranges from 1 to 5 from left to right. (b) Images with two crossed polarizers parallel and perpendicular to the glass surface. (c) Images with two crossed polarizers both on 45° angle with the glass surface. The green crosses in (b) and (c) indicate the orientation of the polarizers. All the micrographs were taken under the same illumination condition. Scale bar: 50 μm.

  • Figure 3

    (Color online) (a) The influence of the separation between the waveguide and the modification tracks (center to center) on the insertion loss of curved waveguides, and the black square at ∞ separation represents the reference insertion loss measured for a curved waveguide without modification. The inset shows the corresponding modification region. Scale bar: 20 μm; (b) The influence of the layer number on the loss of curved waveguides. The values at a layer number of 0 represent the reference losses measured for a curved waveguide without modification.

  • Figure 4

    (Color online) (a) Mode profile under bright field showing the position of guiding mode between the BLSWs; and mode profiles at 780 nm wavelength for straight waveguide without (b) and with (c) four-layer BLSWs. Scale bar: 20 μm.

  • Figure 5

    (Color online) (a) The photograph of waveguide carrying 633 nm beam. Top view images of a waveguide bend without (b) and with (c) BLSWs. The total length of waveguide is ~2 cm and the curvature radius of waveguide bend is 15 mm.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有