logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61, Issue 8: 087411(2018) https://doi.org/10.1007/s11433-018-9210-x

Novel voltage signal at proximity-induced superconducting transition temperature in gold nanowires

More info
  • ReceivedMar 9, 2018
  • AcceptedMar 26, 2018
  • PublishedApr 23, 2018
PACS numbers

Abstract

We observed a novel voltage peak in the proximity-induced superconducting gold (Au) nanowire while cooling the sample through the superconducting transition temperature. The voltage peak turned dip during warming. The voltage peak or dip was found to originate respectively from the emergence or vanishing of the proximity-induced superconductivity in the Au nanowire. The amplitude of the voltage signal depends on the temperature scanning rate, and it cannot be detected when the temperature is changed slower than 0.03 K/min. This transient feature suggests the non-equilibrium property of the effect. Ginzburg-Landau model clarified the voltage peak by considering the emergence of Cooper pairs of relatively lower free energy in superconducting W contact and the non-equilibrium diffusion of Cooper pairs and quasiparticles.


Funded by

the National Basic Research Program of China(Grant,Nos.,2017YFA0303300,2013CB934600)

the National Natural Science Foundation of China(Grant,No.,11774008)

the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(Grant,No.,KF201703)

Tsinghua University

the Key Research Program of the Chinese Academy of Sciences(Grant,No.,XDPB08-1)

and the Peking University President’s Fund for Undergraduate Research(2013)


Acknowledgment

This work was supported by the National Basic Research Program of China (Grant Nos. 2017YFA0303300, and 2013CB934600), the National Natural Science Foundation of China (Grant No. 11774008), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF201703), at Tsinghua University the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB08-1), and the Peking University President’s Fund for Undergraduate Research (2013). The work at Penn State was supported by NSF grants (MRSEC) (Grant Nos. DMR-0820404 and DMR-1420620). We thank Mingliang Tian and Meenakshi Singh for the helpful discussions.


Supplement

Supporting information

The supporting information is available online at phys.scichina.com and http://link.springer.com/journal/11433. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Kirtley J. R., Ketchen M. B., Stawiasz K. G., Sun J. Z., Gallagher W. J., Blanton S. H., Wind S. J.. Appl. Phys. Lett., 1995, 66: 1138 CrossRef ADS Google Scholar

[2] Hopkins D. S., Pekker D., Goldbart P. M., Bezryadin A.. Science, 2005, 308: 1762 CrossRef PubMed ADS Google Scholar

[3] DiCarlo L., Chow J. M., Gambetta J. M., Bishop L. S., Johnson B. R., Schuster D. I., Majer J., Blais A., Frunzio L., Girvin S. M., Schoelkopf R. J.. Nature, 2009, 460: 240 CrossRef PubMed ADS arXiv Google Scholar

[4] Mong R. S. K., Clarke D. J., Alicea J., Lindner N. H., Fendley P., Nayak C., Oreg Y., Stern A., Berg E., Shtengel K., Fisher M. P. A.. Phys. Rev. X, 2014, 4: 011036 CrossRef ADS arXiv Google Scholar

[5] Sharifi F., Herzog A. V., Dynes R. C.. Phys. Rev. Lett., 1993, 71: 428 CrossRef PubMed ADS Google Scholar

[6] Bezryadin A., Lau C. N., Tinkham M.. Nature, 2000, 404: 971 CrossRef PubMed Google Scholar

[7] Tian M., Wang J., Zhang Q., Kumar N., Mallouk T. E., Chan M. H. W.. Nano Lett., 2009, 9: 3196 CrossRef PubMed ADS arXiv Google Scholar

[8] Chen Y., Lin Y. H., Snyder S. D., Goldman A. M., Kamenev A.. Nat. Phys, 2014, 10: 567 CrossRef ADS arXiv Google Scholar

[9] Zhao W., Liu X., Chan M. H. W.. Nano Lett., 2016, 16: 1173 CrossRef PubMed ADS Google Scholar

[10] Arutyunov K. Y., Golubev D. S., Zaikin A. D.. Phys. Rep., 2008, 464: 1 CrossRef ADS arXiv Google Scholar

[11] Langer J. S., Ambegaokar V.. Phys. Rev., 1967, 164: 498 CrossRef ADS Google Scholar

[12] Skocpol W. J., Beasley M. R., Tinkham M.. J. Low Temp. Phys., 1974, 16: 145 CrossRef ADS Google Scholar

[13] Giordano N.. Phys. Rev. Lett., 1988, 61: 2137 CrossRef PubMed ADS Google Scholar

[14] de Gennes P. G.. Rev. Mod. Phys., 1964, 36: 225 CrossRef ADS Google Scholar

[15] Wang J., Sun Y., Tian M., Liu B., Singh M., Chan M. H. W.. Phys. Rev. B, 2012, 86: 035439 CrossRef ADS arXiv Google Scholar

[16] Buzdin A. I.. Rev. Mod. Phys., 2005, 77: 935 CrossRef ADS Google Scholar

[17] Bergeret F. S., Volkov A. F., Efetov K. B.. Rev. Mod. Phys., 2005, 77: 1321 CrossRef ADS Google Scholar

[18] Keizer R. S., Goennenwein S. T. B., Klapwijk T. M., Miao G., Xiao G., Gupta A.. Nature, 2006, 439: 825 CrossRef PubMed ADS Google Scholar

[19] Wang J., Singh M., Tian M., Kumar N., Liu B., Shi C., Jain J. K., Samarth N., Mallouk T. E., Chan M. H. W.. Nat. Phys., 2010, 6: 389 CrossRef ADS Google Scholar

[20] Heersche H. B., Jarillo-Herrero P., Oostinga J. B., Vandersypen L. M. K., Morpurgo A. F.. Nature, 2007, 446: 56 CrossRef PubMed ADS Google Scholar

[21] Zareapour P., Hayat A., Zhao S. Y. F., Kreshchuk M., Jain A., Kwok D. C., Lee N., Cheong S. W., Xu Z., Yang A., Gu G. D., Jia S., Cava R. J., Burch K. S.. Nat. Commun., 2012, 3: 1056 CrossRef PubMed ADS arXiv Google Scholar

[22] Wang J., Chang C. Z., Li H., He K., Zhang D., Singh M., Ma X. C., Samarth N., Xie M., Xue Q. K., Chan M. H. W.. Phys. Rev. B, 2012, 85: 045415 CrossRef ADS arXiv Google Scholar

[23] Zhang D., Wang J., DaSilva A. M., Lee J. S., Gutierrez H. R., Chan M. H. W., Jain J., Samarth N.. Phys. Rev. B, 2011, 84: 165120 CrossRef ADS arXiv Google Scholar

[24] Wang M. X., Liu C., Xu J. P., Yang F., Miao L., Yao M. Y., Gao C. L., Shen C., Ma X., Chen X., Xu Z. A., Liu Y., Zhang S. C., Qian D., Jia J. F., Xue Q. K.. Science, 2012, 336: 52 CrossRef PubMed ADS arXiv Google Scholar

[25] Yang F., Qu F., Shen J., Ding Y., Chen J., Ji Z., Liu G., Fan J., Yang C., Fu L., Lu L.. Phys. Rev. B, 2012, 86: 134504 CrossRef ADS Google Scholar

[26] Mourik V., Zuo K., Frolov S. M., Plissard S. R., Bakkers E. P. A. M., Kouwenhoven L. P.. Science, 2012, 336: 1003 CrossRef PubMed ADS arXiv Google Scholar

[27] Nadj-Perge S., Drozdov I. K., Li J., Chen H., Jeon S., Seo J., MacDonald A. H., Bernevig B. A., Yazdani A.. Science, 2014, 346: 602 CrossRef PubMed ADS arXiv Google Scholar

[28] Tian M., Wang J., Kurtz J., Mallouk T. E., Chan M. H. W.. Nano Lett., 2003, 3: 919 CrossRef PubMed ADS Google Scholar

[29] Wang J., Shi C., Tian M., Zhang Q., Kumar N., Jain J. K., Mallouk T. E., Chan M. H. W.. Phys. Rev. Lett., 2009, 102: 247003 CrossRef PubMed ADS arXiv Google Scholar

[30] Sadki E. S., Ooi S., Hirata K.. Appl. Phys. Lett., 2004, 85: 6206 CrossRef ADS Google Scholar

[31] Sun Y., Wang J., Zhao W., Tian M., Singh M., Chan M. H. W.. Sci Rep, 2013, 3: 2307 CrossRef PubMed ADS Google Scholar

[32] Clarke J.. Phys. Rev. Lett., 1972, 28: 1363 CrossRef ADS Google Scholar

[33] Tinkham M., Clarke J.. Phys. Rev. Lett., 1972, 28: 1366 CrossRef ADS Google Scholar

[34] Cadden-Zimansky P., Chandrasekhar V.. Phys. Rev. Lett., 2006, 97: 237003 CrossRef PubMed ADS Google Scholar

[35] Beckmann D., Weber H. B., Löhneysen H. V.. Phys. Rev. Lett., 2004, 93: 197003 CrossRef PubMed ADS Google Scholar

[36] Russo S., Kroug M., Klapwijk T. M., Morpurgo A. F.. Phys. Rev. Lett., 2005, 95: 027002 CrossRef PubMed ADS Google Scholar

[37] Singh M., Chan M. H. W.. Phys. Rev. B, 2013, 88: 064511 CrossRef ADS Google Scholar

[38] A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964). Google Scholar

[39] Arutyunov K. Y., Presnov D. A., Lotkhov S. V., Pavolotski A. B., Rinderer L.. Phys. Rev. B, 1999, 59: 6487 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) (a) A scanning electron microscope image of Au nanowire contacted by two superconducting W compound electrodes at the middle and two normal Pt electrodes at the ends. (b) Schematic for “non-local” voltage measurement of Au nanowire. The excitation current was applied via the two electrodes at the left side, while the voltage signal was detected via the two electrodes at the right side. (c), (d) The detected “non-local” voltage signals with applied currents of 5 nA and 100 nA, respectively, while cooling (black lines) or warming (red lines) between 2 and 6 K at 0.1 K/min. (e), (f) Voltage signals were detected in similar conditions with (c) and (d) but with opposite current direction. Each data point in (c)-(f) is an average of 25 measurements. Insets of (c)-(f): Configurations of electrodes.

  • Figure 2

    (Color online) (a) The detected “non-local” voltage signals while warming the sample from 2 to 6 K at 0.1 K/min at magnetic fields of 0, 1, 2, 4, and 6 T. The position and width of voltage peak (T*±∆T) at corresponding magnetic field B* were plotted at the bottom with error bar. (b) Fitting voltage peak data (T*, B*) by the empirical relation B*(T)=B*0[1(T/T*0)2]. (c) Standard four probe resistance as a function of temperature at various magnetic fields of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 10 T. The transition range (Tc±∆T) was plotted at the bottom with error bars. Tc is defined as the intersection of two black dashed lines, where one is the linear extension of the superconducting transition drop and the other is extrapolated from the resistance tail. (d) Fitting superconducting transition data (Tc, Bc) by the empirical relation Bc(T)=Bc0[1(T/Tc0)2]. Insets of (b) and (d): Configurations of electrodes.

  • Figure 3

    (Color online) (a)-(e) The “non-local” voltage signals detected while cooling (black lines) or warming (red lines) between 2 and 6 K at various temperature scanning rates u of 0.01, 0.03, 0.05, 0.1 and 0.2 K/min. The excitation current through the two leads on the left is 100 nA. (f) Time evolution of the voltage signal while warming up the system from 2 to 3.95 K at 0.1 K/min and then keeping at 3.95 K.

  • Figure 4

    (Color online) (a) Schematic of the non-local property of superconducting order parameter. The proximity-induced superconductivity in Au nanowire is achieved by Cooper pair diffusion from the W lead across the interface. (b) Calculated voltage accumulation U=fWfAuNe while cooling across Tc. The rise of the voltage peak is depicted by eq. (3), while the voltage drop is a result of the diffusion of Cooper pairs and quasiparticles as a result of the electric potential difference. Inset: the magnified view of the measured voltage peak as a comparison with eq. (3).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号