SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61 , Issue 9 : 094601(2018) https://doi.org/10.1007/s11433-018-9239-9

An overview of healthcare monitoring by flexible electronics

More info
  • ReceivedApr 2, 2018
  • AcceptedMay 4, 2018
  • PublishedJul 10, 2018
PACS numbers


Flexible electronics integrated with stretchable/bendable structures and various microsensors that monitor the temperature, pressure, sweat, bioelectricity, body hydration, etc., have a wide range of applications in the human healthcare sector. The science underlying this technology draws from many research areas, such as information technology, materials science, and structural mechanics, to efficiently and accurately monitor technology for various signals. In this paper, we make a classification and comb to the designs, materials, structures and functions of numerous flexible electronics for signal monitoring in the human healthcare sector. Some perspectives in this field are discussed in the concluding remarks.


This work was supported by the National Natural Science Foundation of China (Grant Nos. 11572323, 11772331, and 11302038), the Chinese Academy of Sciences via the “Hundred Talent Program”, the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB22040501), the State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology (Grant No. GZ1603), the State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology (Grant No. DMETKF2017008), and the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (CAST) (Grant No. 2015QNRC001).


[1] Xu X., Davanco M., Qi X., Forrest S. R.. Org. Electron., 2008, 9: 1122 CrossRef Google Scholar

[2] Jung I., Shin G., Malyarchuk V., Ha J. S., Rogers J. A.. Appl. Phys. Lett., 2010, 96: 021110 CrossRef ADS Google Scholar

[3] Wagner S., Lacour S. P., Jones J., Hsu P. I., Sturm J. C., Li T., Suo Z.. Phys. E-Low-dimensional Syst. NanoStruct., 2004, 25: 326 CrossRef ADS Google Scholar

[4] Hammock M. L., Chortos A., Tee B. C. K., Tok J. B. H., Bao Z.. Adv. Mater., 2013, 25: 5997 CrossRef PubMed Google Scholar

[5] Kim D. H., Wang S., Keum H., Ghaffari R., Kim Y. S., Tao H., Panilaitis B., Li M., Kang Z., Omenetto F., Huang Y., Rogers J. A.. Small, 2012, 8: 3263 CrossRef PubMed Google Scholar

[6] Song T., Cheng H., Choi H., Lee J. H., Han H., Lee D. H., Yoo D. S., Kwon M. S., Choi J. M., Doo S. G., Chang H., Xiao J., Huang Y., Park W. I., Chung Y. C., Kim H., Rogers J. A., Paik U.. ACS Nano, 2012, 6: 303 CrossRef PubMed Google Scholar

[7] Biosensors Market (Electrochemical, Optical, Piezoelectric & Thermistor)Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2012-2018, Market Report (Transparency Market Research, 2013). Google Scholar

[8] Forrest S. R.. Nature, 2004, 428: 911 CrossRef PubMed ADS Google Scholar

[9] Kim H., Brueckner E., Song J., Li Y., Kim S., Lu C., Sulkin J., Choquette K., Huang Y., Nuzzo R. G., Rogers J. A.. Proc. Natl. Acad. Sci. USA, 2011, 108: 10072 CrossRef PubMed ADS Google Scholar

[10] Ma Q., Zhang Y.. J. Appl. Mech., 2016, 83: 111008 CrossRef ADS Google Scholar

[11] Su Y., Liu Z., Kim S., Wu J., Huang Y., Rogers J. A.. Int. J. Solids Struct., 2012, 49: 3416 CrossRef Google Scholar

[12] Su Y., Wang S., Huang Y. A., Luan H., Dong W., Fan J. A., Yang Q., Rogers J. A., Huang Y.. Small, 2015, 11: 367 CrossRef PubMed Google Scholar

[13] H. Liu, R. Y. Xue, X. C. Ping, J. Q. Hu, H. P. Wu, H. Zhang, X. Guo, R. Li, Y. L. Chen, and Y. W. Su, Sci. China-Phys. Mech. Astron. 2018, doi: 10.1007/s11433-018-9238-2. Google Scholar

[14] Pailler-Mattei C., Bec S., Zahouani H.. Med. Eng. Phys., 2008, 30: 599 CrossRef PubMed Google Scholar

[15] Kaltenbrunner M., Sekitani T., Reeder J., Yokota T., Kuribara K., Tokuhara T., Drack M., Schwödiauer R., Graz I., Bauer-Gogonea S., Bauer S., Someya T.. Nature, 2013, 499: 458 CrossRef PubMed ADS Google Scholar

[16] Kim D. H., Viventi J., Amsden J. J., Xiao J., Vigeland L., Kim Y. S., Blanco J. A., Panilaitis B., Frechette E. S., Contreras D., Kaplan D. L., Omenetto F. G., Huang Y., Hwang K. C., Zakin M. R., Litt B., Rogers J. A.. Nat. Mater, 2010, 9: 511 CrossRef PubMed ADS Google Scholar

[17] Araki H., Kim J., Zhang S., Banks A., Crawford K. E., Sheng X., Gutruf P., Shi Y., Pielak R. M., Rogers J. A.. Adv. Funct. Mater., 2017, 27: 1604465 CrossRef Google Scholar

[18] Choi K. H., Zubair M., Dang H. W.. Jpn. J. Appl. Phys., 2014, 53: 05HB02 CrossRef ADS Google Scholar

[19] Lee C. Y., Lin C. H., Lo Y. M.. Sensors, 2011, 11: 3706 CrossRef PubMed Google Scholar

[20] Tan Q., Ren Z., Cai T., Li C., Zheng T., Li S., Xiong J.. J. Sens., 2015, 2015: 1 CrossRef Google Scholar

[21] Chiappini E., Sollai S., Longhi R., Morandini L., Laghi A., Osio C. E., Persiani M., Lonati S., Picchi R., Bonsignori F., Mannelli F., Galli L., de Martino M.. J. Clinical Nursing, 2011, 20: 1311 CrossRef PubMed Google Scholar

[22] Trung T. Q., Ramasundaram S., Hwang B. U., Lee N. E.. Adv. Mater., 2016, 28: 502 CrossRef PubMed Google Scholar

[23] Tian L., Li Y., Webb R. C., Krishnan S., Bian Z., Song J., Ning X., Crawford K., Kurniawan J., Bonifas A., Ma J., Liu Y., Xie X., Chen J., Liu Y., Shi Z., Wu T., Ning R., Li D., Sinha S., Cahill D. G., Huang Y., Rogers J. A.. Adv. Funct. Mater., 2017, 27: 1701282 CrossRef Google Scholar

[24] Webb R. C., Bonifas A. P., Behnaz A., Zhang Y., Yu K. J., Cheng H., Shi M., Bian Z., Liu Z., Kim Y. S., Yeo W. H., Park J. S., Song J., Li Y., Huang Y., Gorbach A. M., Rogers J. A.. Nat. Mater., 2013, 12: 938 CrossRef PubMed ADS Google Scholar

[25] Chen Y., Lu B., Chen Y., Feng X.. Sci. Rep., 2015, 5: 11505 CrossRef PubMed ADS Google Scholar

[26] Zhang Y., Chad Webb R., Luo H., Xue Y., Kurniawan J., Cho N. H., Krishnan S., Li Y., Huang Y., Rogers J. A.. Adv. Healthcare Mater., 2016, 5: 119 CrossRef PubMed Google Scholar

[27] Wu Z., Li C., Hartings J., Ghosh S., Narayan R., Ahn C.. J. Micromech. Microeng., 2017, 27: 025001 CrossRef ADS Google Scholar

[28] Graz I., Krause M., Bauer-Gogonea S., Bauer S., Lacour S. P., Ploss B., Zirkl M., Stadlober B., Wagner S.. J. Appl. Phys., 2009, 106: 034503 CrossRef ADS Google Scholar

[29] Mahadeva S. K., Yun S., Kim J.. Sens.s Actuators A-Phys., 2011, 165: 194 CrossRef Google Scholar

[30] Yang J., Wei D., Tang L., Song X., Luo W., Chu J., Gao T., Shi H., Du C.. RSC Adv., 2015, 5: 25609 CrossRef Google Scholar

[31] Shih W. P., Tsao L. C., Lee C. W., Cheng M. Y., Chang C., Yang Y. J., Fan K. C.. Sensors, 2010, 10: 3597 CrossRef PubMed Google Scholar

[32] Yokota T., Inoue Y., Terakawa Y., Reeder J., Kaltenbrunner M., Ware T., Yang K., Mabuchi K., Murakawa T., Sekino M., Voit W., Sekitani T., Someya T.. Proc. Natl. Acad. Sci. USA, 2015, 112: 14533 CrossRef PubMed ADS Google Scholar

[33] Koh A., Gutbrod S. R., Meyers J. D., Lu C., Webb R. C., Shin G., Li Y., Kang S. K., Huang Y., Efimov I. R., Rogers J. A.. Adv. Healthcare Mater., 2016, 5: 373 CrossRef PubMed Google Scholar

[34] Ren X., Pei K., Peng B., Zhang Z., Wang Z., Wang X., Chan P. K. L.. Adv. Mater., 2016, 28: 4832 CrossRef PubMed Google Scholar

[35] Wang X., Dong L., Zhang H., Yu R., Pan C., Wang Z. L.. Adv. Sci., 2015, 2: 1500169 CrossRef PubMed Google Scholar

[36] Zang Y., Zhang F., Di C., Zhu D.. Mater. Horiz., 2015, 2: 140 CrossRef Google Scholar

[37] Cannata J. M., Vilkomerson D., Chilipka T., Yang H. C., Han S., Rowe V. L., Weaver F. A.. J. Acoust. Soc. Am., 2010, 128: 2304 CrossRef ADS Google Scholar

[38] Sepúlveda A. T., Fachin F., Villoria R. G., Wardle B. L., Viana J. C., Pontes A. J., Rocha L. A.. Procedia Eng., 2011, 25: 140 CrossRef Google Scholar

[39] Lei K. F., Lee K. F., Lee M. Y.. MicroElectron. Eng., 2012, 99: 1 CrossRef Google Scholar

[40] Lim H. C., Schulkin B., Pulickal M. J., Liu S., Petrova R., Thomas G., Wagner S., Sidhu K., Federici J. F.. Sens. Actuators A-Phys., 2005, 119: 332 CrossRef Google Scholar

[41] Liu C. X., Choi J. W.. Microsyst. Technol., 2011, 18: 365 CrossRef Google Scholar

[42] Liu X., Zhu Y., Nomani M. W., Wen X., Hsia T. Y., Koley G.. J. Micromech. Microeng., 2013, 23: 025022 CrossRef ADS Google Scholar

[43] Burg B. R., Helbling T., Hierold C., Poulikakos D.. J. Appl. Phys., 2011, 109: 064310 CrossRef ADS Google Scholar

[44] Akiyama M., Morofuji Y., Kamohara T., Nishikubo K., Tsubai M., Fukuda O., Ueno N.. J. Appl. Phys., 2006, 100: 114318 CrossRef ADS Google Scholar

[45] Choi W., Lee J., Kyoung Yoo Y., Kang S., Kim J., Hoon Lee J.. Appl. Phys. Lett., 2014, 104: 123701 CrossRef ADS Google Scholar

[46] Sepúlveda A. T., Villoria R. G. D., Viana J. C., Pontes A. J., Wardle B. L., Rocha L. A.. Procedia Eng., 2012, 47: 1177 CrossRef Google Scholar

[47] Dagdeviren C., Su Y., Joe P., Yona R., Liu Y., Kim Y. S., Huang Y. A., Damadoran A. R., Xia J., Martin L. W., Huang Y., Rogers J. A.. Nat. Commun., 2014, 5: 4496 CrossRef PubMed ADS Google Scholar

[48] Cho J. H., Ha S. H., Kim J. M.. Nanotechnology, 2018, 29: 155501 CrossRef PubMed ADS Google Scholar

[49] Jiang Y., Liu Z., Matsuhisa N., Qi D., Leow W. R., Yang H., Yu J., Chen G., Liu Y., Wan C., Liu Z., Chen X.. Adv. Mater., 2018, 30: 1706589 CrossRef PubMed Google Scholar

[50] Cheng M. Y., Huang X. H., Ma C. W., Yang Y. J.. J. Micromech. Microeng., 2009, 19: 115001 CrossRef ADS Google Scholar

[51] Leineweber M., Pelz G., Schmidt M., Kappert H., Zimmer G.. Sens. Actuators A-Phys., 2000, 84: 236 CrossRef Google Scholar

[52] Mannsfeld S. C. B., Tee B. C. K., Stoltenberg R. M., Chen C. V. H. H., Barman S., Muir B. V. O., Sokolov A. N., Reese C., Bao Z.. Nat. Mater, 2010, 9: 859 CrossRef PubMed ADS Google Scholar

[53] Wan S., Bi H., Zhou Y., Xie X., Su S., Yin K., Sun L.. Carbon, 2017, 114: 209 CrossRef Google Scholar

[54] Liu Y., Tao L. Q., Wang D. Y., Zhang T. Y., Yang Y., Ren T. L.. Appl. Phys. Lett., 2017, 110: 123508 CrossRef ADS Google Scholar

[55] Zhu S. E., Krishna Ghatkesar M., Zhang C., Janssen G. C. A. M.. Appl. Phys. Lett., 2013, 102: 161904 CrossRef ADS Google Scholar

[56] Grow R. J., Wang Q., Cao J., Wang D., Dai H.. Appl. Phys. Lett., 2005, 86: 093104 CrossRef ADS Google Scholar

[57] Zhu B., Niu Z., Wang H., Leow W. R., Wang H., Li Y., Zheng L., Wei J., Huo F., Chen X.. Small, 2014, 10: 3625 CrossRef PubMed Google Scholar

[58] Tian H., Shu Y., Wang X. F., Mohammad M. A., Bie Z., Xie Q. Y., Li C., Mi W. T., Yang Y., Ren T. L.. Sci. Rep., 2015, 5: 8603 CrossRef PubMed ADS Google Scholar

[59] Lee C. T., Chiu Y. S.. Appl. Phys. Lett., 2015, 106: 073502 CrossRef ADS Google Scholar

[60] Choong C. L., Shim M. B., Lee B. S., Jeon S., Ko D. S., Kang T. H., Bae J., Lee S. H., Byun K. E., Im J., Jeong Y. J., Park C. E., Park J. J., Chung U. I.. Adv. Mater., 2014, 26: 3451 CrossRef PubMed Google Scholar

[61] Boutry C. M., Nguyen A., Lawal Q. O., Chortos A., Rondeau-Gagné S., Bao Z.. Adv. Mater., 2015, 27: 6954 CrossRef PubMed Google Scholar

[62] Kim J., Lee M., Shim H. J., Ghaffari R., Cho H. R., Son D., Jung Y. H., Soh M., Choi C., Jung S., Chu K., Jeon D., Lee S. T., Kim J. H., Choi S. H., Hyeon T., Kim D. H.. Nat. Commun., 2014, 5: 5747 CrossRef PubMed ADS Google Scholar

[63] Zang Y., Zhang F., Huang D., Gao X., Di C. A., Zhu D.. Nat. Commun., 2015, 6: 6269 CrossRef PubMed ADS Google Scholar

[64] Kang D., Pikhitsa P. V., Choi Y. W., Lee C., Shin S. S., Piao L., Park B., Suh K. Y., Kim T. I., Choi M.. Nature, 2014, 516: 222 CrossRef PubMed ADS Google Scholar

[65] Jung S., Lee J., Hyeon T., Lee M., Kim D. H.. Adv. Mater., 2014, 26: 6329 CrossRef PubMed Google Scholar

[66] Pang C., Koo J. H., Nguyen A., Caves J. M., Kim M. G., Chortos A., Kim K., Wang P. J., Tok J. B. H., Bao Z.. Adv. Mater., 2015, 27: 634 CrossRef PubMed Google Scholar

[67] D. Carrera, B. Rossi, D. Zambon, P. Fragneto, and G. Boracchi, in ECG Monitoring in Wearable Devices by Sparse Models: Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases, Riva del Garda, Italy, 19-23 September, 2016, 9853, pp. 145-160, doi: 10.1007/978-3-319-46131-1_21. Google Scholar

[68] Baek J. Y., An J. H., Choi J. M., Park K. S., Lee S. H.. Sens.s Actuators A-Phys., 2008, 143: 423 CrossRef Google Scholar

[69] Pandian P. S., Mohanavelu K., Safeer K. P., Kotresh T. M., Shakunthala D. T., Gopal P., Padaki V. C.. Med. Eng. Phys., 2008, 30: 466 CrossRef PubMed Google Scholar

[70] Lee S. M., Sim K. S., Kim K. K., Lim Y. G., Park K. S.. Med. Biol. Eng. Comput., 2010, 48: 447 CrossRef PubMed Google Scholar

[71] Jung H. C., Moon J. H., Baek D. H., Lee J. H., Choi Y. Y., Hong J. S., Lee S. H.. IEEE Trans. Biomed. Eng., 2012, 59: 1472 CrossRef PubMed Google Scholar

[72] Pu X. F., Wan L., Zhang H., Qin Y. J., Hong Z. L.. J. Semicond., 2013, 34: 055002 CrossRef ADS Google Scholar

[73] Liu Z., Liu X.. J. Text. Sci. Tech., 2015, 01: 110 CrossRef Google Scholar

[74] Lou C., Li R., Li Z., Liang T., Wei Z., Run M., Yan X., Liu X.. Sensors, 2016, 16: 1833 CrossRef PubMed Google Scholar

[75] Lee J. S., Heo J., Lee W. K., Lim Y. G., Kim Y. H., Park K. S.. Sensors, 2014, 14: 14732 CrossRef PubMed Google Scholar

[76] Meng Y., Li Z., Chen J.. Microsyst. Technol., 2015, 22: 2027 CrossRef Google Scholar

[77] Liu B., Luo Z., Zhang W., Tu Q., Jin X.. Sens. Actuators A-Phys., 2016, 247: 459 CrossRef Google Scholar

[78] Yapici M. K., Alkhidir T., Samad Y. A., Liao K.. Sens. Actuators B-Chem., 2015, 221: 1469 CrossRef Google Scholar

[79] Lee S. M., Byeon H. J., Lee J. H., Baek D. H., Lee K. H., Hong J. S., Lee S. H.. Sci. Rep., 2014, 4: 6074 CrossRef PubMed ADS Google Scholar

[80] Imani S., Bandodkar A. J., Mohan A. M. V., Kumar R., Yu S., Wang J., Mercier P. P.. Nat. Commun., 2016, 7: 11650 CrossRef PubMed ADS Google Scholar

[81] Cai F., Yi C., Liu S., Wang Y., Liu L., Liu X., Xu X., Wang L.. Biosens. Bioelectron., 2016, 77: 907 CrossRef PubMed Google Scholar

[82] Khan Y., Garg M., Gui Q., Schadt M., Gaikwad A., Han D., Yamamoto N. A. D., Hart P., Welte R., Wilson W., Czarnecki S., Poliks M., Jin Z., Ghose K., Egitto F., Turner J., Arias A. C.. Adv. Funct. Mater., 2016, 26: 8764 CrossRef Google Scholar

[83] Barea R., Boquete L., Ortega S., López E., Rodríguez-Ascariz J. M.. Expert Syst. Appl., 2012, 39: 2677 CrossRef Google Scholar

[84] Peng H. L., Jing-Quan Liu H. L., Tian H. C., Dong Y. Z., Yang B., Chen X., Yang C. S.. Sens. Actuators B-Chem., 2016, 226: 349 CrossRef Google Scholar

[85] Kim D. H., Lu N., Ma R., Kim Y. S., Kim R. H., Wang S., Wu J., Won S. M., Tao H., Islam A., Yu K. J., Kim T., Chowdhury R., Ying M., Xu L., Li M., Chung H. J., Keum H., McCormick M., Liu P., Zhang Y. W., Omenetto F. G., Huang Y., Coleman T., Rogers J. A.. Science, 2011, 333: 838 CrossRef PubMed ADS Google Scholar

[86] Guo X., Pei W., Wang Y., Chen Y., Zhang H., Wu X., Yang X., Chen H., Liu Y., Liu R.. BioMed. Signal Processing Control, 2016, 30: 98 CrossRef Google Scholar

[87] Xu B., Akhtar A., Liu Y., Chen H., Yeo W. H., Park S. I., Boyce B., Kim H., Yu J., Lai H. Y., Jung S., Zhou Y., Kim J., Cho S., Huang Y., Bretl T., Rogers J. A.. Adv. Mater., 2016, 28: 4462 CrossRef PubMed Google Scholar

[88] Jeong J. W., Yeo W. H., Akhtar A., Norton J. J. S., Kwack Y. J., Li S., Jung S. Y., Su Y., Lee W., Xia J., Cheng H., Huang Y., Choi W. S., Bretl T., Rogers J. A.. Adv. Mater., 2013, 25: 6839 CrossRef PubMed Google Scholar

[89] Stein H., Firestone K.. Seminars Fetal Neonatal Med., 2014, 19: 60 CrossRef PubMed Google Scholar

[90] Allsop T., Earthrowl-Gould T., Webb D. J., Bennion I.. J. Biomed. Opt., 2003, 8: 552 CrossRef PubMed ADS Google Scholar

[91] Becker D. E., Casabianca A. B.. Anesthesia Prog., 2009, 56: 14 CrossRef PubMed Google Scholar

[92] J. De jonckheere, F. Narbonneau, L.T. D'Angelo, J. Witt, B. Paquet, D. Kinet, K. Kreber, and R. Logier, in FBG-based smart textiles for continuous monitoring of respiratory movements for healthcare applications: Proceedings of 12th IEEE International Conference o ne-Health Networking Applications and Services (Healthcom), Lyon, France, 1-3 July 2010, pp. 277-282, doi:10.1109/HEALTH.2010.5556557. Google Scholar

[93] Chang W. Y., Huang C. C., Chen C. C., Chang C. C., Yang C. L.. Sensors, 2014, 14: 22021 CrossRef PubMed Google Scholar

[94] Jiang P., Zhao S., Zhu R.. Sensors, 2015, 15: 31738 CrossRef PubMed Google Scholar

[95] Liu Z., Zhang S., Jin Y. M., Ouyang H., Zou Y., Wang X. X., Xie L. X., Li Z.. Semicond. Sci. Technol., 2017, 32: 064004 CrossRef ADS Google Scholar

[96] Ono T., Takegawa H., Ageishi T., Takashina M., Numasaki H., Matsumoto M., Teshima T.. Phys. Med. Biol., 2011, 56: 6279 CrossRef PubMed ADS Google Scholar

[97] Krehel M., Schmid M., Rossi R. M., Boesel L. F., Bona G. L., Scherer L. J.. Sensors, 2014, 14: 13088 CrossRef PubMed Google Scholar

[98] Hamdani S. T. A., Fernando A.. Sensors, 2015, 15: 7742 CrossRef PubMed Google Scholar

[99] Janik P., Janik M. A., Wróbel Z.. Sens. Actuators A-Phys., 2016, 239: 79 CrossRef Google Scholar

[100] Nag A., Mukhopadhyay S. C., Kosel J.. Sens. Actuators A-Phys., 2016, 251: 148 CrossRef Google Scholar

[101] Xiao P., Ciortea L. I., Singh H., Berg E. P., Imhof R. E.. J. Phys.-Conf. Ser., 2010, 214: 012008 CrossRef ADS Google Scholar

[102] Webb R. C., Pielak R. M., Bastien P., Ayers J., Niittynen J., Kurniawan J., Manco M., Lin A., Cho N. H., Malyrchuk V., Balooch G., Rogers J. A.. PLoS ONE, 2015, 10: e0118131 CrossRef PubMed ADS Google Scholar

[103] Tagami H., Ohi M., Iwatsuki K., Kanamaru Y., Yamada M., Ichijo B.. J. Invest. Dermatology, 1980, 75: 500 CrossRef Google Scholar

[104] Clarys P., Barel A. O., Gabard B.. Skin Res. Tech., 1999, 5: 14 CrossRef Google Scholar

[105] Alekseev S. I., Gordiienko O. V., Ziskin M. C.. Bioelectromagnetics, 2008, 29: 340 CrossRef PubMed Google Scholar

[106] Yamamoto T., Yamamoto Y.. Med. Biol. Engng., 1976, 14: 151 CrossRef Google Scholar

[107] Gunter R. L., Delinger W. D., Porter T. L., Stewart R., Reed J.. Med. Eng. Phys., 2005, 27: 215 CrossRef PubMed Google Scholar

[108] Stewart R., Reed J., Zhong J., Morton K., Porter T. L.. Med. Eng. Phys., 2007, 29: 1084 CrossRef PubMed Google Scholar

[109] Huang X., Yeo W. H., Liu Y., Rogers J. A.. Biointerphases, 2012, 7: 52 CrossRef PubMed Google Scholar

[110] Zhou Y., Han H., Naw H. P. P., Lammy A. V., Goh C. H., Boujday S., Steele T. W. J.. Mater. Des., 2016, 90: 1181 CrossRef Google Scholar

[111] Huang X., Liu Y., Cheng H., Shin W. J., Fan J. A., Liu Z., Lu C. J., Kong G. W., Chen K., Patnaik D., Lee S. H., Hage-Ali S., Huang Y., Rogers J. A.. Adv. Funct. Mater., 2014, 24: 3846 CrossRef Google Scholar

[112] Yao S., Myers A., Malhotra A., Lin F., Bozkurt A., Muth J. F., Zhu Y.. Adv. Healthcare Mater., 2017, 6: 1601159 CrossRef PubMed Google Scholar

[113] Krishnan S., Shi Y., Webb R. C., Ma Y., Bastien P., Crawford K. E., Wang A., Feng X., Manco M., Kurniawan J., Tir E., Huang Y., Balooch G., Pielak R. M., Rogers J. A.. Microsyst. Nanoeng., 2017, 3: 17014 CrossRef Google Scholar

[114] Cheng H., Zhang Y., Huang X., Rogers J. A., Huang Y.. Sens. Actuators A-Phys., 2013, 203: 149 CrossRef Google Scholar

[115] Schazmann B., Morris D., Slater C., Beirne S., Fay C., Reuveny R., Moyna N., Diamond D.. Anal. Methods, 2010, 2: 342 CrossRef Google Scholar

[116] Ngoepe M., Choonara Y. E., Tyagi C., Tomar L. K., du Toit L. C., Kumar P., Ndesendo V. M. K., Pillay V.. Sensors, 2013, 13: 7680 CrossRef PubMed Google Scholar

[117] Bandodkar A. J., Molinnus D., Mirza O., Guinovart T., Windmiller J. R., Valdés-Ramírez G., Andrade F. J., Schöning M. J., Wang J.. Biosens. Bioelectron., 2014, 54: 603 CrossRef PubMed Google Scholar

[118] Huang J. T. J., Leweke F. M., Oxley D., Wang L., Harris N., Koethe D., Gerth C. W., Nolden B. M., Gross S., Schreiber D., Reed B., Bahn S.. PLoS Med., 2006, 3: e428 CrossRef PubMed Google Scholar

[119] Wong D. T.. J. Am. Dental Association, 2006, 137: 313 CrossRef Google Scholar

[120] Kwak B. S., Kim H. O., Kim J. H., Lee S., Jung H. I.. Biosens. Bioelectron., 2012, 35: 484 CrossRef PubMed Google Scholar

[121] Parrilla M., Cánovas R., Jeerapan I., Andrade F. J., Wang J.. Adv. Healthcare Mater., 2016, 5: 996 CrossRef PubMed Google Scholar

[122] Cazalé A., Sant W., Ginot F., Launay J. C., Savourey G., Revol-Cavalier F., Lagarde J. M., Heinry D., Launay J., Temple-Boyer P.. Sens. Actuators B-Chem., 2016, 225: 1 CrossRef Google Scholar

[123] Guinovart T., Bandodkar A. J., Windmiller J. R., Andrade F. J., Wang J.. Analyst, 2013, 138: 7031 CrossRef PubMed ADS Google Scholar

[124] Labroo P., Cui Y.. Biosens. Bioelectron., 2013, 41: 852 CrossRef PubMed Google Scholar

[125] Tur-García E. L., Davis F., Collyer S. D., Holmes J. L., Barr H., Higson S. P. J.. Sens. Actuators B-Chem., 2017, 242: 502 CrossRef Google Scholar

[126] Dam V. A. T., Zevenbergen M. A. G., van Schaijk R.. Procedia Eng., 2015, 120: 237 CrossRef Google Scholar

[127] Kudo H., Sawada T., Kazawa E., Yoshida H., Iwasaki Y., Mitsubayashi K.. Biosens. Bioelectron., 2006, 22: 558 CrossRef PubMed Google Scholar

[128] Schaefer M., Schellenberg M., Merle U., Weiss K. H., Stremmel W.. BMC Gastroenterol, 2008, 8: 1 CrossRef PubMed Google Scholar

[129] Derbyshire P. J., Barr H., Davis F., Higson S. P. J.. J. Physiol. Sci., 2012, 62: 429 CrossRef PubMed Google Scholar

[130] Shirreffs S. M., Maughan R. J.. J. Appl. Physiol., 1997, 82: 336 CrossRef PubMed Google Scholar

[131] Choi J., Xue Y., Xia W., Ray T. R., Reeder J. T., Bandodkar A. J., Kang D., Xu S., Huang Y., Rogers J. A.. Lab Chip, 2017, 17: 2572 CrossRef PubMed Google Scholar

[132] Choi J., Kang D., Han S., Kim S. B., Rogers J. A.. Adv. Healthcare Mater., 2017, 6: 1601355 CrossRef PubMed Google Scholar

[133] Caldara M., Colleoni C., Guido E., Re V., Rosace G.. Sens. Actuators B-Chem., 2016, 222: 213 CrossRef Google Scholar

[134] Coyle S., King-Tong Lau S., Moyna N., O’Gorman D., Diamond D., Di Francesco F., Costanzo D., Salvo P., Trivella M. G., De Rossi D. E., Taccini N., Paradiso R., Porchet J. A., Ridolfi A., Luprano J., Chuzel C., Lanier T., Revol-Cavalier F., Schoumacker S., Mourier V., Chartier I., Convert R., De-Moncuit H., Bini C.. IEEE Trans. Inform. Technol. Biomed., 2010, 14: 364 CrossRef PubMed Google Scholar

[135] Lee H., Choi T. K., Lee Y. B., Cho H. R., Ghaffari R., Wang L., Choi H. J., Chung T. D., Lu N., Hyeon T., Choi S. H., Kim D. H.. Nat. Nanotech., 2016, 11: 566 CrossRef PubMed ADS Google Scholar

[136] Gao W., Emaminejad S., Nyein H. Y. Y., Challa S., Chen K., Peck A., Fahad H. M., Ota H., Shiraki H., Kiriya D., Lien D. H., Brooks G. A., Davis R. W., Javey A.. Nature, 2016, 529: 509 CrossRef PubMed ADS Google Scholar

[137] Gao W., Nyein H. Y. Y., Shahpar Z., Fahad H. M., Chen K., Emaminejad S., Gao Y., Tai L. C., Ota H., Wu E., Bullock J., Zeng Y., Lien D. H., Javey A.. ACS Sens., 2016, 1: 866 CrossRef Google Scholar

[138] Huang X., Liu Y., Chen K., Shin W. J., Lu C. J., Kong G. W., Patnaik D., Lee S. H., Cortes J. F., Rogers J. A.. Small, 2014, 10: 3083 CrossRef PubMed Google Scholar

[139] Chen K., He R., Luo X., Qin P., Tan L., Tang Y., Yang Z.. Biosens. Bioelectron., 2017, 94: 609 CrossRef PubMed Google Scholar

[140] Kim D. M., Cho S. J., Cho C. H., Kim K. B., Kim M. Y., Shim Y. B.. Biosens. Bioelectron., 2016, 79: 165 CrossRef PubMed Google Scholar

[141] Salvo P., Calisi N., Melai B., Cortigiani B., Mannini M., Caneschi A., Lorenzetti G., Paoletti C., Lomonaco T., Paolicchi A., Scataglini I., Dini V., Romanelli M., Fuoco R., Di Francesco F.. Biosens. Bioelectron., 2017, 91: 870 CrossRef PubMed Google Scholar

[142] Lee H., Song C., Hong Y. S., Kim M. S., Cho H. R., Kang T., Shin K., Choi S. H., Hyeon T., Kim D. H.. Sci. Adv., 2017, 3: e1601314 CrossRef PubMed ADS Google Scholar

[143] Anastasova S., Crewther B., Bembnowicz P., Curto V., Ip H. M., Rosa B., Yang G. Z.. Biosens. Bioelectron., 2017, 93: 139 CrossRef PubMed Google Scholar

[144] Wang X., Gu Y., Xiong Z., Cui Z., Zhang T.. Adv. Mater., 2014, 26: 1336 CrossRef PubMed Google Scholar

[145] Gao Y., Ota H., Schaler E. W., Chen K., Zhao A., Gao W., Fahad H. M., Leng Y., Zheng A., Xiong F., Zhang C., Tai L. C., Zhao P., Fearing R. S., Javey A.. Adv. Mater., 2017, 29: 1701985 CrossRef PubMed Google Scholar

[146] Kim J., Gutruf P., Chiarelli A. M., Heo S. Y., Cho K., Xie Z., Banks A., Han S., Jang K. I., Lee J. W., Lee K. T., Feng X., Huang Y., Fabiani M., Gratton G., Paik U., Rogers J. A.. Adv. Funct. Mater., 2017, 27: 1604373 CrossRef PubMed Google Scholar

[147] Song J. K., Son D., Kim J., Yoo Y. J., Lee G. J., Wang L., Choi M. K., Yang J., Lee M., Do K., Koo J. H., Lu N., Kim J. H., Hyeon T., Song Y. M., Kim D. H.. Adv. Funct. Mater., 2017, 27: 1605286 CrossRef Google Scholar

[148] Li R., Cheng H., Su Y., Hwang S. W., Yin L., Tao H., Brenckle M. A., Kim D. H., Omenetto F. G., Rogers J. A., Huang Y.. Adv. Funct. Mater., 2013, 23: 3106 CrossRef Google Scholar

[149] Hwang S. W., Kang S. K., Huang X., Brenckle M. A., Omenetto F. G., Rogers J. A.. Adv. Mater., 2015, 27: 47 CrossRef PubMed Google Scholar

[150] Kang S. K., Hwang S. W., Yu S., Seo J. H., Corbin E. A., Shin J., Wie D. S., Bashir R., Ma Z., Rogers J. A.. Adv. Funct. Mater., 2015, 25: 1789 CrossRef Google Scholar

[151] Hwang S. W., Tao H., Kim D. H., Cheng H., Song J. K., Rill E., Brenckle M. A., Panilaitis B., Won S. M., Kim Y. S., Song Y. M., Yu K. J., Ameen A., Li R., Su Y., Yang M., Kaplan D. L., Zakin M. R., Slepian M. J., Huang Y., Omenetto F. G., Rogers J. A.. Science, 2012, 337: 1640 CrossRef PubMed ADS Google Scholar

[152] Dagdeviren C., Hwang S. W., Su Y., Kim S., Cheng H., Gur O., Haney R., Omenetto F. G., Huang Y., Rogers J. A.. Small, 2013, 9: 3398 CrossRef PubMed Google Scholar

[153] Hwang S. W., Kim D. H., Tao H., Kim T., Kim S., Yu K. J., Panilaitis B., Jeong J. W., Song J. K., Omenetto F. G., Rogers J. A.. Adv. Funct. Mater., 2013, 23: 4087 CrossRef Google Scholar

[154] Hwang S. W., Huang X., Seo J. H., Song J. K., Kim S., Hage-Ali S., Chung H. J., Tao H., Omenetto F. G., Ma Z., Rogers J. A.. Adv. Mater., 2013, 25: 3526 CrossRef PubMed Google Scholar

[155] Lee C. H., Kang S. K., Salvatore G. A., Ma Y., Kim B. H., Jiang Y., Kim J. S., Yan L., Wie D. S., Banks A., Oh S. J., Feng X., Huang Y., Troester G., Rogers J. A.. Adv. Funct. Mater., 2015, 25: 5100 CrossRef Google Scholar

[156] Kim D. H., Ghaffari R., Lu N., Wang S., Lee S. P., Keum H., D'Angelo R., Klinker L., Su Y., Lu C., Kim Y. S., Ameen A., Li Y., Zhang Y., de Graff B., Hsu Y. Y., Liu Z., Ruskin J., Xu L., Lu C., Omenetto F. G., Huang Y., Mansour M., Slepian M. J., Rogers J. A.. Proc. Natl. Acad. Sci. USA, 2012, 109: 19910 CrossRef PubMed ADS Google Scholar

[157] Lei T., Guan M., Liu J., Lin H. C., Pfattner R., Shaw L., McGuire A. F., Huang T. C., Shao L., Cheng K. T., Tok J. B. H., Bao Z.. Proc. Natl. Acad. Sci. USA, 2017, 114: 5107 CrossRef PubMed Google Scholar

  • Figure 1

    (Color online) Categories of commonly detectable physiological signals.

  • Figure 2

    (Color online) (a) Different methods of temperature measurement; (b) optical images of a sensor array integrated on a thin elastomeric substrate [24]; (c) structure of an ultra-flexible temperature sensor on a breathable film [25].

  • Figure 3

    (Color online) (a) A temperature-sensor array and temperature distribution subjected to a heat source [31]; (b) temperature mapping of a fingertip and a rat lung [32]; (c) ultrathin injectable thermal sensors and a device injected into the myocardial tissue [33]; (d) schematic diagram of a flexible temperature sensor and the measured temperature distribution of the forehead [34].

  • Figure 4

    (Color online) (a) Pressure-sensitive structured PDMS films and the microstructured details; (b) pressure-response curves for different types of microstructured PDMS films [52]; (c) schematic of the fabrication of GO foam-based pressure sensor arrays; (d) pressure response of GO foams with different densities [53].

  • Figure 5

    (Color online) (a) Photos of the PDMS films with (top right) and without (bottom left) graphene layers and the pattern arrays; (b) stability of the sensor under loading cycles [57]; (c) cross-bar device structure of the pressure sensor based on the foam-like LSG [58]; (d) epitaxial structure, schematic configuration of the pressure sensors and the SEM image of ZnO nanorod array [59].

  • Figure 6

    (Color online) Some promising applications of pressure sensors. (a) Demonstration of blood pressure monitoring using a pressure sensor [60]; (b) real-time transient signals of pulse-wave velocity recorded at the femoral and carotid artery [61]; (c) photograph of a representative smart artificial skin with integrated stretchable sensors and actuators [62]; (d) sensors attached to the artery of the wrist and the signals [63]; (e) a sensor attached to the neck for recording human speech [64]; (f) schematic descriptions and the morphology of integrated energy devices [65]; (g) measurement of pulses on the identical contact sites of the neck [66].

  • Figure 7

    (Color online) Micrographs of various flexible electrodes in ECG devices. (a) Structural details with conductive foam [75]; (b) dome array on the electrode [76]; (c) three-layered structure of composite electrode and the SEM image of the middle layer (AgNWs) [77]; (d) a new graphene-coated textile electrode [78].

  • Figure 8

    (Color online) Typical commercial device-level flexible ECG measurement equipment. (a) ECG waveforms recorded by the device with CNT electrodes [79]; (b) effect of amperometric measurement on the ECG signals with and without sweat [80]; (c) apex cardiogram recording [81]; (d) flexible hybrid electronics and the heart rate during exercise [82].

  • Figure 9

    (Color online) (a) EEG measurement corresponding to eye opening and blinking [85]; (b) flexible EOG systems and signals recording [86]; (c) skin-like sensors and EMG signals [87]; (d) structure of the surface EMG sensor and the degree of conformal contact with different thicknesses of elastomers [88].

  • Figure 10

    (Color online) Various respiratory monitoring devices and sensors. (a) Thoracic volume variation during respiration and gesture recognition during sleep [93]; (b) schematic of the flow sensor and the simulated exhalation and inhalation processes [94]; (c) piezoelectric active sensor and the measurement of respiration rate [95].

  • Figure 11

    (Color online) Typical methods for measuring skin hydration.

  • Figure 12

    (Color online) Typical epidermal sensors for conformal skin hydration monitoring. (a) Soft, releasable connectors between the hydration sensors and the skin [109]; (b) a sensor integrated directly on the skin [111]; (c) photograph showing the AgNW sensor placed on the inner side of the forearm [112]; (d) sensor array for epidermal hydration mapping [113]; (e) optical micrograph of an epidermal hydration sensing system [114].

  • Figure 13

    (Color online) Measurement principles for sweat monitoring.

  • Figure 14

    (Color online) (a) Photograph of a wearable device integrating the multiplexed sensor array; (b) flattened flexible device and sensor array [136]; (c) schematic showing the simultaneous multiplexed monitoring of heavy metals [137]; (d) schematic illustration of a passive wireless capacitive sensor and the series of pictures of a sensor doped with a pH indicator [138].

  • Figure 15

    (Color online) (a) Optical image of the wearable sweat analysis patch and the characterization of individual sensors [142]; (b) schematic of the fabrication steps of the microfluidic chip and changes in location, temperature, pH, and sodium measurements [143].

  • Figure 16

    (Color online) (a) A liquid metal-based pressure sensor and the gesture recognition [145]; (b) multifunctional flexible platform and various signal measurements [146]; (c) a transparent and wearable force touch sensor array and its deformability [147]; (d) disintegrable electronics with different stages of disintegration [157].

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号