logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 62 , Issue 1 : 010011(2019) https://doi.org/10.1007/s11433-018-9251-0

The CST bounce universe model— A parametric study

More info
  • ReceivedApr 6, 2018
  • AcceptedMay 22, 2018
  • PublishedAug 9, 2018
PACS numbers

Abstract

A bounce universe model with a scale-invariant and stable spectrum of primordial density perturbations was constructed using a consistent truncation of the D-brane dynamics from Type IIB string theory. A coupling was introduced between the tachyon field and the adjoint Higgs field on the D3-branes to lock the tachyon at the top of its potential hill and to model the bounce process, which isknown as the Coupled Scalar and Tachyon Bounce (CSTB) Universe. The CSTB model has been shown to be ghost free, and it fulfils the null energy condition;in addition, it can also solve the Big Bang cosmic singularity problem.In this paper we conduct an extensive follow-up study of the parameterspace of the CSTB model. In particular we are interested in the parameter values that can produce a single bounce to arrive at a radiation-dominated universe.We further establish that the CSTB universe is a viablealternative to inflation, as it can naturally produce a sufficient numberof e-foldings in the locked inflation epoch and in thepost-bounce expansion to overcome the four fundamental limitations of theBig Bang cosmology, which are flatness, horizon, homogeneity and singularity,resulting in a universe of the current size.


Acknowledgment

We would like to thank Jin U Kang, ChangHong Li and Yuan Xin for useful discussions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11775110, and 11690034), the European Union's Horizon 2020 Research and Innovation (RISE) Programme (Grant No. 644121), and the Priority Academic Program Development for Jiangsu Higher Education Institutions (PAPD).


References

[1] Guth A. H.. Phys. Rev. D, 1981, 23: 347-356 CrossRef ADS Google Scholar

[2] Guth A. H., Kaiser D. I., Nomura Y.. Phys. Lett. B, 2014, 733: 112-119 CrossRef ADS arXiv Google Scholar

[3] Hinshaw G., Larson D., Komatsu E., Spergel D. N., Bennett C. L., Dunkley J., Nolta M. R., Halpern M., Hill R. S., Odegard N., Page L., Smith K. M., Weiland J. L., Gold B., Jarosik N., Kogut A., Limon M., Meyer S. S., Tucker G. S., Wollack E., Wright E. L., Ade P. A. R., Aghanim N., Akrami Y., Aluri P. K., Arnaud M., Ashdown M., Aumont J., Baccigalupi C., Banday A. J., Barreiro R. B., Bartolo N., Basak S., Battaner E., Benabed K., Beno?t A., Benoit-Lévy A., Bernard J. P., Bersanelli M., Bielewicz P., Bock J. J., Bonaldi A., Bonavera L., Bond J. R., Borrill J., Bouchet F. R., Boulanger F., Bucher M., Burigana C., Butler R. C., Calabrese E., Cardoso J. F., Casaponsa B., Catalano A., Challinor A., Chamballu A., Chiang H. C., Christensen P. R., Church S., Clements D. L., Colombi S., Colombo L. P. L., Combet C., Contreras D., Couchot F., Coulais A., Crill B. P., Cruz M., Curto A., Cuttaia F., Danese L., Davies R. D., Davis R. J., de Bernardis P., de Rosa A., de Zotti G., Delabrouille J., Désert F. X., Diego J. M., Dole H., Donzelli S., Doré O., Douspis M., Ducout A., Dupac X., Efstathiou G., Elsner F., En?lin T. A., Eriksen H. K., Fantaye Y., Fergusson J., Fernandez-Cobos R., Finelli F., Forni O., Frailis M., Fraisse A. A., Franceschi E., Frejsel A., Frolov A., Galeotta S., Galli S., Ganga K., Gauthier C., Ghosh T., Giard M., Giraud-Héraud Y., Gjerl?w E., González-Nuevo J., Górski K. M., Gratton S., Gregorio A., Gruppuso A., Gudmundsson J. E., Hansen F. K., Hanson D., Harrison D. L., Henrot-Versillé S., Hernández-Monteagudo C., Herranz D., Hildebrandt S. R., Hivon E., Hobson M., Holmes W. A., Hornstrup A., Hovest W., Huang Z., Huffenberger K. M., Hurier G., Jaffe A. H., Jaffe T. R., Jones W. C., Juvela M., Keih?nen E., Keskitalo R., Kim J., Kisner T. S., Knoche J., Kunz M., Kurki-Suonio H., Lagache G., L?hteenm?ki A., Lamarre J. M., Lasenby A., Lattanzi M., Lawrence C. R., Leonardi R., Lesgourgues J., Levrier F., Liguori M., Lilje P. B., Linden-V?rnle M., Liu H., López-Caniego M., Lubin P. M., Macías-Pérez J. F., Maggio G., Maino D., Mandolesi N., Mangilli A., Marinucci D., Maris M., Martin P. G., Martínez-González E., Masi S., Matarrese S., McGehee P., Meinhold P. R., Melchiorri A., Mendes L., Mennella A., Migliaccio M., Mikkelsen K., Mitra S., Miville-Deschênes M. A., Molinari D., Moneti A., Montier L., Morgante G., Mortlock D., Moss A., Munshi D., Murphy J. A., Naselsky P., Nati F., Natoli P., Netterfield C. B., N?rgaard-Nielsen H. U., Noviello F., Novikov D., Novikov I., Oxborrow C. A., Paci F., Pagano L., Pajot F., Pant N., Paoletti D., Pasian F., Patanchon G., Pearson T. J., Perdereau O., Perotto L., Perrotta F., Pettorino V., Piacentini F., Piat M., Pierpaoli E., Pietrobon D., Plaszczynski S., Pointecouteau E., Polenta G., Popa L., Pratt G. W., Prézeau G., Prunet S., Puget J. L., Rachen J. P., Rebolo R., Reinecke M., Remazeilles M., Renault C., Renzi A., Ristorcelli I., Rocha G., Rosset C., Rossetti M., Rotti A., Roudier G., Rubi?o-Martín J. A., Rusholme B., Sandri M., Santos D., Savelainen M., Savini G., Scott D., Seiffert M. D., Shellard E. P. S., Souradeep T., Spencer L. D., Stolyarov V., Stompor R., Sudiwala R., Sunyaev R., Sutton D., Suur-Uski A. S., Sygnet J. F., Tauber J. A., Terenzi L., Toffolatti L., Tomasi M., Tristram M., Trombetti T., Tucci M., Tuovinen J., Valenziano L., Valiviita J., Van Tent B., Vielva P., Villa F., Wade L. A., Wandelt B. D., Wehus I. K., Yvon D., Zacchei A., Zibin J. P., Zonca A.. Astrophys. J. Suppl. Ser., 2013, 208: 19 CrossRef ADS arXiv Google Scholar

[4] V. F. Mukhanov, and G. V. Chibisov, JETP Lett. 33, 532 (1981). Google Scholar

[5] Borde A., Vilenkin A.. Phys. Rev. Lett., 1994, 72: 3305-3308 CrossRef PubMed ADS Google Scholar

[6] Trodden M., Mukhanov V. F., Brandenberger R. H.. Phys. Lett. B, 1993, 316: 483-487 CrossRef ADS Google Scholar

[7] Gasperini M., Veneziano G.. Phys. Rep., 2003, 373: 1-212 CrossRef ADS Google Scholar

[8] Linde A.. Fortschr. Phys., 2009, 57: 418-433 CrossRef ADS Google Scholar

[9] S.-H. H. Tye, in String Theory and Fundamental Interactions. Lecture Notes in Physics, vol 737, edited by M. Gasperini, and J. Maharana, (Springer, Berlin, Heidelberg, 2008). Google Scholar

[10] Nojiri S., Odintsov S. D., Oikonomou V. K., Battefeld D., Peter P., Wilson-Ewing E., Novello M., Bergliaffa S., Cai Y. F., Easson D. A., Brandenberger R.. Phys. Rep., 2017, 692: 1-104 CrossRef ADS arXiv Google Scholar

[11] Steinhardt P. J.. Science, 2002, 296: 1436-1439 CrossRef PubMed ADS Google Scholar

[12] Wands D.. Phys. Rev. D, 1999, 60: 023507 CrossRef ADS Google Scholar

[13] Finelli F., Brandenberger R.. Phys. Rev. D, 2002, 65: 103522 CrossRef ADS arXiv Google Scholar

[14] Lin C., Brandenberger R. H., Levasseur L. P.. J. Cosmol. Astropart. Phys., 2011, 2011: 019-019 CrossRef ADS arXiv Google Scholar

[15] Brandenberger R.. Phys. Rev. D, 2009, 80: 043516 CrossRef ADS arXiv Google Scholar

[16] Qiu T., Yang K. C.. J. Cosmol. Astropart. Phys., 2010, 2010: 012-012 CrossRef ADS arXiv Google Scholar

[17] Cai Y. F., Chen S. H., Dent J. B., Dutta S., Saridakis E. N.. Class. Quantum Grav., 2011, 28: 215011 CrossRef ADS arXiv Google Scholar

[18] Odintsov S. D., Oikonomou V. K.. Phys. Rev. D, 2014, 90: 124083 CrossRef ADS arXiv Google Scholar

[19] Koehn M., Lehners J. L., Ovrut B. A.. Phys. Rev. D, 2014, 90: 025005 CrossRef ADS arXiv Google Scholar

[20] Qiu T., Wang Y. T.. J. High Energ. Phys., 2015, 2015: 130 CrossRef ADS arXiv Google Scholar

[21] Bhattacharya K., Cai Y. F., Das S., Cai Y. F., Qiu T., Brandenberger R., Zhang X.. Phys. Rev. D, 2013, 87: 083511 CrossRef ADS arXiv Google Scholar

[22] Cai Y. F., Qiu T., Brandenberger R., Zhang X.. Phys. Rev. D, 2009, 80: 023511 CrossRef ADS arXiv Google Scholar

[23] Cai Y. F., Qiu T., Zhang X., Piao Y. S., Li M.. J. High Energy Phys., 2007, 2007: 071-071 CrossRef ADS arXiv Google Scholar

[24] Cai Y. F., Zhang X.. J. Cosmol. Astropart. Phys., 2009, 2009: 003-003 CrossRef ADS arXiv Google Scholar

[25] Khoury J., Ovrut B. A., Steinhardt P. J., Turok N., Lyth D. H., Brandenberger R., Finelli F.. Phys. Rev. D, 2001, 64: 123522 CrossRef ADS Google Scholar

[26] Carloni S., Dunsby P. K. S., Solomons D.. Class. Quantum Grav., 2006, 23: 1913-1922 CrossRef ADS Google Scholar

[27] Sen A.. J. High Energy Phys., 2002, 2002: 048-048 CrossRef ADS Google Scholar

[28] Sen A.. J. High Energy Phys., 2002, 2002: 065-065 CrossRef ADS Google Scholar

[29] Gibbons G. W.. Phys. Lett. B, 2002, 537: 1-4 CrossRef ADS Google Scholar

[30] Li C., Wang L., Cheung Y. K. E.. Phys. Dark Universe, 2014, 3: 18-33 CrossRef ADS arXiv Google Scholar

[31] C. Li, and Y. K. E. Cheung,. arXiv Google Scholar

[32] Li C., Cheung Y. K. E.. J. Cosmol. Astropart. Phys., 2014, 2014: 008-008 CrossRef ADS arXiv Google Scholar

[33] Li C., Brandenberger R. H., Cheung Y. K. E.. Phys. Rev. D, 2014, 90: 123535 CrossRef ADS arXiv Google Scholar

[34] Cheung Y. K. E., Kang J. U., Li C.. J. Cosmol. Astropart. Phys., 2014, 2014: 001-001 CrossRef ADS arXiv Google Scholar

[35] Cheung Y. K. E., Vergados J. D.. J. Cosmol. Astropart. Phys., 2015, 2015: 014-014 CrossRef ADS arXiv Google Scholar

[36] Cheung Y. K., Li C., Vergados J.. Symmetry, 2016, 8: 136 CrossRef arXiv Google Scholar

[37] Vergados J. D., Moustakidis C. C., Cheung Y. K. E., Ejiri H., Kim Y., Lee J. Y.. Adv. High Energy Phys., 2018, 2018: 1-14 CrossRef arXiv Google Scholar

[38] Dvali G., Tye S. H. H.. Phys. Lett. B, 1999, 450: 72-82 CrossRef ADS Google Scholar

[39] Molina-Par??s C., Visser M.. Phys. Lett. B, 1999, 455: 90-95 CrossRef ADS arXiv Google Scholar

[40] Sen A., Zwiebach B., Berkovits N., Sen A., Zwiebach B.. J. High Energy Phys., 2000, 2000: 002-002 CrossRef ADS Google Scholar

[41] Berkovits N., Sen A., Zwiebach B.. Nucl. Phys. B, 2000, 587: 147-178 CrossRef ADS Google Scholar

[42] Drewes M., Kang J. U., Cheung Y. K. E., Drewes M., Kang J. U., Kim J. C.. J. High Energ. Phys., 2016, 2016: 51 CrossRef ADS arXiv Google Scholar

[43] Cai Y. F.. Sci. China-Phys. Mech. Astron., 2014, 57: 1414-1430 CrossRef ADS arXiv Google Scholar

[44] L. Ming, T. Zheng and Y. K. E. Cheung,. arXiv Google Scholar

[45] Brandenberger R. H., Ferreira E. G. M., Morrison I. A., Cai Y. F., Das S. R., Wang Y.. Phys. Rev. D, 2016, 94: 083508 CrossRef ADS arXiv Google Scholar

[46] S. P. Kumar and V. Vaganov,. arXiv Google Scholar

[47] A. Bzowski, T. Hertog and M. Schillo,. arXiv Google Scholar

[48] S. P. Kumar and V. Vaganov,. arXiv Google Scholar

[49] J. L. F. Barbon and E. Rabinovici,. arXiv Google Scholar

[50] N. Engelhardt and G. T. Horowitz,. arXiv Google Scholar

[51] Engelhardt N., Hertog T., Horowitz G. T.. J. High Energ. Phys., 2015, 2015: 44 CrossRef ADS arXiv Google Scholar

[52] Enciso A., Kamran N.. Gen Relativ Gravit, 2015, 47: 147 CrossRef ADS arXiv Google Scholar

[53] Banerjee S., Bhowmick S., Chatterjee S., Mukherji S.. J. High Energ. Phys., 2015, 2015: 43 CrossRef ADS arXiv Google Scholar

[54] Balasubramanian V., Kraus P., Lawrence A., Trivedi S. P.. Phys. Rev. D, 1999, 59: 104021 CrossRef ADS Google Scholar

[55] Hertog T., Horowitz G. T.. J. High Energy Phys., 2005, 2005: 005-005 CrossRef ADS Google Scholar

[56] Hamilton A., Kabat D., Lifschytz G., Lowe D. A.. Phys. Rev. D, 2006, 73: 086003 CrossRef ADS Google Scholar

[57] Chu C. S., Ho P. M.. J. High Energy Phys., 2006, 2006: 013-013 CrossRef ADS Google Scholar

[58] Das S. R., Michelson J., Narayan K., Trivedi S. P.. Phys. Rev. D, 2006, 74: 026002 CrossRef ADS Google Scholar

[59] Chu C. S., Ho P. M.. J. High Energy Phys., 2008, 2008: 058-058 CrossRef ADS arXiv Google Scholar

[60] N. Turok, B. Craps, and T. Hertog,. arXiv Google Scholar

[61] Awad A., Das S. R., Narayan K., Trivedi S. P.. Phys. Rev. D, 2008, 77: 046008 CrossRef ADS arXiv Google Scholar

[62] Craps B., Hertog T., Turok N.. Phys. Rev. D, 2012, 86: 043513 CrossRef ADS arXiv Google Scholar

[63] Barbón J. L. F., Rabinovici E.. J. High Energ. Phys., 2011, 2011: 44 CrossRef ADS arXiv Google Scholar

[64] Enciso A., Kamran N.. Phys. Rev. D, 2012, 85: 106016 CrossRef ADS arXiv Google Scholar

[65] Engelhardt N., Hertog T., Horowitz G. T.. Phys. Rev. Lett., 2014, 113: 121602 CrossRef PubMed ADS arXiv Google Scholar

[66] Randall L., Sundrum R.. Phys. Rev. Lett., 1999, 83: 4690-4693 CrossRef ADS Google Scholar

[67] Brandenberger R., Vafa C.. Nucl. Phys. B, 1989, 316: 391-410 CrossRef ADS Google Scholar

[68] Kounnas C., Partouche H., Toumbas N.. Nucl. Phys. B, 2012, 855: 280-307 CrossRef ADS arXiv Google Scholar

[69] Berndsen A., Cline J.. Int. J. Mod. Phys. A, 2004, 19: 5311-5316 CrossRef ADS Google Scholar

[70] Watson S.. Phys. Rev. D, 2004, 70: 066005 CrossRef ADS Google Scholar

[71] Cheung Y. K. E., Watson S., Brandenberger R.. J. High Energy Phys., 2006, 2006: 025-025 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) The evolution of cosmos in the CSTB model. Our model starts at $C^\prime$ as it undergoes a contraction phase, from $C^\prime$ to $B^\prime$, and then a deflation era, from $B^\prime$ to $A$, before entering a locked inflation era from $A$ to $B$. About the bounce point, the exponential expansion of the universe starts, $\dot{a}=0$ and $\ddot{a}>0$. This period is extended by the effective coupling of tachyon and Higgs fields. Quantum mechanically the tachyon is prevented from decaying (tachyon condensation) by the fast oscillations of the Higgs fields. The tachyon condensation eventually takes place at $B$, where all the energy of tachyon field transfers to tachyon matter. The phase transition at $B$ is followed by a tachyon matter dominated period, $B{\rightarrow}C$. At point $C^\prime$, reheating may happen as the universe undergoes another phase transition, during which the energy of tachyon matter transfers to radiation.

  • Figure 2

    (Color online) A sketch of the effective potential of the CSTB cosmos. For a non-vanishing value of $\phi$, the coupling term pulls back the vacuum to finite, $(T_\text{c},~0)$. The tachyon is, therefore, stabilised around the vacuum with quasi-harmonic oscillations. This plot is from refs. [31,32].

  • Figure 3

    (Color online) A generic cross section ($\phi~\ne~0$) of the tachyon-scalar field space: During the contraction period the tachyon field, $T$, blue-shifts from $T_3$ to $T_2$ as the universe contracts from Point $C^\prime$ to Point $B^\prime$ in Figure 1. When $T$ field goes to $T_1$, the effective mass of $T$ becomes positive (dash line from $T_1$ to $T_0$), the universe is dominated by vacuum energy and undergoes a deflation until the Hubble parameter becomes zero. When $H=0$, the tachyon field is locked at $T_0$, and the universe starts to inflate.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号