SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 62 , Issue 1 : 014601(2019) https://doi.org/10.1007/s11433-018-9274-6

X-Mechanics—An endless frontier

More info
  • ReceivedJun 4, 2018
  • AcceptedJul 2, 2018
  • PublishedSep 27, 2018


In contrast to the conventional wisdom that mechanics is a relatively mature subject, the new manifestation of mechanics in an extended or crossed form is unfolding. Mechanics is now powering all subjects, from physical sciences, life sciences to social sciences. We name this new phase for the development of mechanics X-Mechanics. The present article outlines the contents of X-Mechanics from four aspects: cross media, cross scales, cross compliances, and cross cyber/physical spaces. X-Mechanics constitutes an endless frontier of science and technology.

Funded by

the National Natural Science Foundation of China(Grant,No.,11621062,11725210,U1613202)


This work was supported by the National Natural Science Foundation of China (Grant Nos. 11621062, 11725210, and U1613202). The author expresses his/her thanks to the people helping with this work. Financial support by Zhejiang University on establishing a Center for X-Mechanics is sincerely acknowledged.

Author information

Wei Yang was born in 1954 in Beijing. He received his PhD degree from Brown University, USA in 1985. Currently, he is a Professor of Zhejiang University, a Member of Chinese Academy of Sciences, a Fellow of The World Academy of Sciences (TWAS), a Foreign Member of National Academy of Engineering (USA), and the President of the Chinese Society of Theoretical and Applied Mechanics (CSTAM).


[1] H. S. Hsien, J. Chin. Inst. Eng. 6, 1 (1948). Google Scholar

[2] J. R. Rice, Mechanics of Solids, Mechanics, Encyclopedia Britainnica, 15th ed. (Encyclopædia Britannica, Inc., Chicago, Illinois, 1993), p. 734. Google Scholar

[3] A. C. Pipkin, Lecture on Viscoelasticity Theory (Springer-Verlag, New York, 1986). Google Scholar

[4] Gong J. P., Katsuyama Y., Kurokawa T., Osada Y.. Adv. Mater., 2003, 15: 1155 CrossRef Google Scholar

[5] Sun J. Y., Zhao X., Illeperuma W. R. K., Chaudhuri O., Oh K. H., Mooney D. J., Vlassak J. J., Suo Z.. Nature, 2012, 489: 133 CrossRef PubMed ADS Google Scholar

[6] Sun T. L., Kurokawa T., Kuroda S., Ihsan A. B., Akasaki T., Sato K., Haque M. A., Nakajima T., Gong J. P.. Nat. Mater., 2013, 12: 932 CrossRef PubMed ADS Google Scholar

[7] Keplinger C., Sun J. Y., Foo C. C., Rothemund P., Whitesides G. M., Suo Z.. Science, 2013, 341: 984 CrossRef PubMed ADS Google Scholar

[8] Larson C., Peele B., Li S., Robinson S., Totaro M., Beccai L., Mazzolai B., Shepherd R.. Science, 2016, 351: 1071 CrossRef PubMed ADS Google Scholar

[9] Schroeder T. B. H., Guha A., Lamoureux A., VanRenterghem G., Sept D., Shtein M., Yang J., Mayer M.. Nature, 2017, 552: 214 CrossRef PubMed ADS Google Scholar

[10] Kim C. C., Lee H. H., Oh K. H., Sun J. Y.. Science, 2016, 353: 682 CrossRef PubMed ADS Google Scholar

[11] Acome E., Mitchell S. K., Morrissey T. G., Emmett M. B., Benjamin C., King M., Radakovitz M., Keplinger C.. Science, 2018, 359: 61 CrossRef PubMed ADS Google Scholar

[12] Carpi F., Bauer S., de Rossi D.. Science, 2010, 330: 1759 CrossRef PubMed ADS Google Scholar

[13] Li T., Keplinger C., Baumgartner R., Bauer S., Yang W., Suo Z.. J. Mech. Phys. Solids, 2013, 61: 611 CrossRef ADS Google Scholar

[14] Yang X., Li G., Cheng T., Zhao Q., Ma C., Xie T., Li T., Yang W.. J. Appl. Mech, 2016, 83: 071005 CrossRef ADS Google Scholar

[15] Yuk H., Zhang T., Parada G. A., Liu X., Zhao X.. Nat. Commun., 2016, 7: 12028 CrossRef PubMed ADS Google Scholar

[16] Liu Q., Nian G., Yang C., Qu S., Suo Z.. Nat. Commun., 2018, 9: 846 CrossRef PubMed ADS Google Scholar

[17] Yang X., An C., Liu S., Cheng T., Bunpetch V., Liu Y., Dong S., Li S., Zou X., Li T., Ouyang H., Wu Z., Yang W.. Adv. Healthcare Mater., 2018, 7: 1701014 CrossRef PubMed Google Scholar

[18] Li T., Li G., Liang Y., Cheng T., Dai J., Yang X., Liu B., Zeng Z., Huang Z., Luo Y., Xie T., Yang W.. Sci. Adv., 2017, 3: e1602045 CrossRef PubMed ADS Google Scholar

[19] X.-P. Chen, G.-R. Li, X.-N. Cao, Z. Zhang, Y.-M. Liang, X.-X. Yang,Y.-H. Xiao, F.-H. Zhou, Z.-L. Huang, Y.-W. Luo, T. Xie, T.-F. Li, W.Yang, Soft-rigid coexist robot adapts the extreme hydrostatic pressure. On preparation. Google Scholar

[20] Lai K. O., Ip N. Y.. Curr. Opin. Neurobiol., 2009, 19: 275 CrossRef PubMed Google Scholar

[21] A. M. Bao, J. H. Luo, D. F. Swaab, J. Zhejiang Univ. (Humanity Soc. Sci. Ed.) 4, 6 (2012). Google Scholar

[22] Holling C. S.. Annu. Rev. Ecol. Syst., 1973, 4: 1 CrossRef Google Scholar

[23] Godschalk D. R.. Nat. Hazards Rev., 2003, 4: 136 CrossRef Google Scholar

[24] Griffith A. A.. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 1921, 221: 163 CrossRef ADS Google Scholar

[25] B. X. Qiu, City Plan. Rev. 4, 11 (2009). Google Scholar

[26] W.-C. Fan, Introduction to Public Safety Science (Science Press, Beijing, 2013). Google Scholar

[27] LeCun Y., Bengio Y., Hinton G.. Nature, 2015, 521: 436 CrossRef PubMed ADS Google Scholar

[28] She Z. S., Leveque E.. Phys. Rev. Lett., 1994, 72: 336 CrossRef PubMed ADS Google Scholar

[29] W. Yang, in An Outline for Interfacial and Nanoscale Failure, Chapter 8.0, Interfacial and Nanoscale Failure, Comprehensive Structure Integrity, edited by W. W. Gerberich, and W. Yang (Elsevier Science, Oxford, 2003). Google Scholar

[30] Freund L. B., Johnson H. T.. J. Mech. Phys. Solids, 2001, 49: 1925 CrossRef ADS Google Scholar

[31] Baskes M. I., Nelson J. S., Wright A. F.. Phys. Rev. B, 1989, 40: 6085 CrossRef ADS Google Scholar

[32] R. Phillips, Crystals, Defects and Microstructures---Modelling Across Scales (Cambridge University Press, Cambridge, 2001). Google Scholar

[33] Fan D., Huang J. W., Zeng X. L., Li Y., E J. C., Huang J. Y., Sun T., Fezzaa K., Wang Z., Luo S. N.. Rev. Sci. Instrum., 2016, 87: 053903 CrossRef PubMed Google Scholar

[34] X. P. Morelle, W. R. Illeperuma, K. Tian, R. Bai, Z. Suo, and J. J. Vlassak, Adv. Mater. 30, 1801541 (2018). Google Scholar

[35] Song J., Chen C., Zhu S., Zhu M., Dai J., Ray U., Li Y., Kuang Y., Li Y., Quispe N., Yao Y., Gong A., Leiste U. H., Bruck H. A., Zhu J. Y., Vellore A., Li H., Minus M. L., Jia Z., Martini A., Li T., Hu L.. Nature, 2018, 554: 224 CrossRef PubMed ADS Google Scholar

[36] Lu L., Shen Y., Chen X., Qian L., Lu K.. Science, 2004, 304: 422 CrossRef PubMed ADS Google Scholar

[37] Wang P., Xu S., Liu J., Li X., Wei Y., Wang H., Gao H., Yang W.. J. Mech. Phys. Solids, 2017, 98: 290 CrossRef ADS Google Scholar

[38] Wang P., Wang H.. J. Appl. Mech, 2017, 84: 111002 CrossRef ADS Google Scholar

[39] Wang P., Wu Y., Liu J., Wang H.. Extreme Mech. Lett., 2017, 17: 38 CrossRef Google Scholar

[40] Lacour S. P., Wagner S., Huang Z., Suo Z.. Appl. Phys. Lett., 2003, 82: 2404 CrossRef ADS Google Scholar

[41] Khang D. Y., Jiang H., Huang Y., Rogers J. A.. Science, 2006, 311: 208 CrossRef PubMed ADS Google Scholar

[42] Zhou T., Hong G., Fu T. M., Yang X., Schuhmann T. G., Viveros R. D., Lieber C. M.. Proc. Natl. Acad. Sci., 2017, 114: 5894 CrossRef PubMed ADS Google Scholar

[43] Trimmer M. B., Ewoldt P. R. H., Kovac M., Lipson H., Lu N., Shahinpoor M., Majidi C.. Soft Robot., 2013, 1: 63 CrossRef Google Scholar

[44] Silver D., Huang A., Maddison C. J., Guez A., Sifre L., van den Driessche G., Schrittwieser J., Antonoglou I., Panneershelvam V., Lanctot M., Dieleman S., Grewe D., Nham J., Kalchbrenner N., Sutskever I., Lillicrap T., Leach M., Kavukcuoglu K., Graepel T., Hassabis D.. Nature, 2016, 529: 484 CrossRef PubMed ADS Google Scholar

[45] Silver D., Schrittwieser J., Simonyan K., Antonoglou I., Huang A., Guez A., Hubert T., Baker L., Lai M., Bolton A., Chen Y., Lillicrap T., Hui F., Sifre L., van den Driessche G., Graepel T., Hassabis D.. Nature, 2017, 550: 354 CrossRef PubMed ADS Google Scholar

[46] X. Bin Peng, P. Abbeel, S. Levine, M. van de Panne, ACM Trans. Graph. 37, 4 (2018). Google Scholar

[47] W. Yang, Mechatronic Reliability (Springer, Berlin, 2003). Google Scholar

[48] Huang G., Li F., Zhao X., Ma Y., Li Y., Lin M., Jin G., Lu T. J., Genin G. M., Xu F.. Chem. Rev., 2017, 117: 12764 CrossRef PubMed Google Scholar

[49] Rao J. S., Zhao C., Zhang A., Duan H., Hao P., Wei R. H., Shang J., Zhao W., Liu Z., Yu J., Fan K. S., Tian Z., He Q., Song W., Yang Z., Sun Y. E., Li X.. Proc. Natl. Acad. Sci., 2018, 115: E5595 CrossRef PubMed Google Scholar

[50] Yang W.. Nature, 2016, 534: 467 CrossRef PubMed ADS Google Scholar

  • Figure 1

    (Color online) Top: the mechanisms of bonding dissimilar polymer networks. Bottom (from left to right): alternatively printing hydrogels and elastomers, printing hydrogel ionic circuit with the shape of anglerfish on the PDMS film, and comparison of PDMS-coated and naked hydrogels after dyed in red bath and washed in clean water [16], with the permission of authors.

  • Figure 2

    (Color online) (a) The flapping induced undulatory propulsion motion of soft fish, after Li et al. [18]; (b) testing at 110 MPa hydrostatic pressure [19].

  • Figure 3

    (Color online) (a) A multiscale view of a polycrystalline aggregate from electron distribution to continuum. (b) A unified data-driven approach may tackle the cross-scale problem of deformation and fracture. The insets are typical structures at different scales.

  • Figure 4

    (Color online) (a) The state-of-the-art aberration-corrected transmission electron microscopy simultaneously captures both the atomic arrangement and elemental information in 2D space. (b) A series of 2D images obtained by rotating the sample around a tilt axis lead to 3D reconstruction with the coordinates of individual atoms. (c) A dedicated four-degrees of freedom nano-manipulator is invented to facilitate this process.

  • Figure 5

    (Color online) Key elements in developing co3-robots share the same core of deep learning.

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号