logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 62 , Issue 1 : 019511(2019) https://doi.org/10.1007/s11433-018-9286-x

CosmicGrowth Simulations—Cosmological simulations for structure growth studies

YiPeng Jing 1,2,3,*
More info
  • ReceivedJul 18, 2018
  • AcceptedAug 7, 2018
  • PublishedAug 27, 2018
PACS numbers

Abstract

I present a large set of high resolution simulations, calledCosmicGrowth Simulations, which were generated with either 8.6 billionor 29 billion particles. As for the nominal cosmological model that canmatch nearly all observations on cosmological scales, I have adopted aflat Cold Dark Matter (CDM) model with a cosmological constant$\Lambda$ ($\Lambda{\rm~CDM}$). The model parameters have been taken either fromthe latest result of the WMAP satellite (WMAP $\Lambda{\rm~CDM}$) or from the firstyear's result of the Planck satellite (Planck $\Lambda{\rm~CDM}$). Sixsimulations are produced in the $\Lambda{\rm~CDM}$ models with two in the Planckmodel and the others in the WMAP model. In order for studying thenon-linear evolution of the clustering, four simulations were alsoproduced with $8.6$ billion particles for the scale-free models of aninitial power spectrum $P(k)\propto~k^n$ with $n=0$, $-1$, $-1.5$ or$-2.0$. Furthermore, two radical CDM models (XCDM) are simulated with8.6 billion particles each. Since the XCDM have some of the modelparameters distinct from those of the $\Lambda{\rm~CDM}$ models, they must beunable to match the observations, but are very useful for studying howthe clustering properties depend on the model parameters. TheFriends-of-Friends (FoF) halos were identified for each snapshot andsubhalos were produced by the Hierarchical Branch Tracing (HBT)algorithm. These simulations form a powerful database to study thegrowth and evolution of the cosmic structures both in theory and inobservation.


Acknowledgment

The work was supported by the National Natural Science Foundation of China (Grant Nos. 11320101002, 11533006, and 11621303), and the National Program on Key Basic Research Project (Grant No. 2015CB857003). I am very grateful to JiaXin Han for identifying subhalos for the $\Lambda$CDM simulations.


References

[1] Frenk C. S., White S. D. M.. Ann. Phys., 2012, 524: 507-534 CrossRef ADS arXiv Google Scholar

[2] Baugh L. R.. Genetics, 2013, 194: 539-555 CrossRef PubMed Google Scholar

[3] Takahashi R., Sato M., Nishimichi T., Taruya A., Oguri M.. Astrophys. J., 2012, 761: 152 CrossRef ADS arXiv Google Scholar

[4] Chen J., Zhang P., Zheng Y., Yu Y., Jing Y.. Astrophys. J., 2018, 861: 58 CrossRef ADS arXiv Google Scholar

[5] Jing Y. P.. Astrophys. J., 1999, 515: L45-L48 CrossRef ADS Google Scholar

[6] Jing Y. P.. Astrophys. J., 1998, 503: L9-L13 CrossRef ADS Google Scholar

[7] Sheth R. K., Mo H. J., Tormen G.. Mon. Not. R. Astron. Soc., 2001, 323: 1-12 CrossRef ADS Google Scholar

[8] Sheth R. K., Tormen G.. Mon. Not. R. Astron. Soc., 1999, 308: 119-126 CrossRef ADS Google Scholar

[9] Gao L., Springel V., White S. D. M.. Mon. Not. R. Astron. Soc.-Lett., 2005, 363: L66-L70 CrossRef ADS Google Scholar

[10] J. Han, Y. Li, Y. Jing, T. Nishimichi, W. Wang, and C. Jiang,. arXiv Google Scholar

[11] Navarro J. F., Frenk C. S., White S. D. M.. Astrophys. J., 1997, 490: 493-508 CrossRef ADS Google Scholar

[12] Wechsler R. H., Bullock J. S., Primack J. R., Kravtsov A. V., Dekel A.. Astrophys. J., 2002, 568: 52-70 CrossRef ADS Google Scholar

[13] Zhao D. H., Mo H. J., Jing Y. P., Borner G.. Mon. Not. R. Astron. Soc., 2003, 339: 12-24 CrossRef ADS Google Scholar

[14] Zhao D. H., Jing Y. P., Mo H. J., Brner G.. Astrophys. J., 2003, 597: L9-L12 CrossRef ADS Google Scholar

[15] Zhao D. H., Jing Y. P., Mo H. J., B?rner G.. Astrophys. J., 2009, 707: 354-369 CrossRef ADS arXiv Google Scholar

[16] Jing Y. P., Suto Y.. Astrophys. J., 2002, 574: 538-553 CrossRef ADS Google Scholar

[17] Gao L., White S. D. M., Jenkins A., Stoehr F., Springel V.. Mon. Not. R. Astron. Soc., 2004, 355: 819-834 CrossRef ADS Google Scholar

[18] Han J., Cole S., Frenk C. S., Jing Y.. Mon. Not. R. Astron. Soc., 2016, 457: 1208-1223 CrossRef ADS arXiv Google Scholar

[19] White S. D. M., Frenk C. S.. Astrophys. J., 1991, 379: 52-79 CrossRef ADS Google Scholar

[20] Kauffmann G., White S. D. M., Guiderdoni B.. Mon. Not. R. Astron. Soc., 1993, 264: 201-218 CrossRef ADS Google Scholar

[21] Cole S., Aragon-Salamanca A., Frenk C. S., Navarro J. F., Zepf S. E.. Mon. Not. R. Astron. Soc., 1994, 271: 781-806 CrossRef ADS Google Scholar

[22] Kang X., Jing Y. P., Mo H. J., Borner G.. Astrophys. J., 2005, 631: 21-40 CrossRef ADS Google Scholar

[23] Jing Y. P., Mo H. J., Borner G.. Astrophys. J., 1998, 494: 1-12 CrossRef ADS Google Scholar

[24] Berlind A. A., Weinberg D. H.. Astrophys. J., 2002, 575: 587-616 CrossRef ADS Google Scholar

[25] Yang X., Mo H. J., Bosch F. C.. Mon. Not. R. Astron. Soc., 2003, 339: 1057-1080 CrossRef ADS Google Scholar

[26] Rodríguez-Puebla A., Primack J. R., Avila-Reese V., Faber S. M.. Mon. Not. R. Astron. Soc., 2017, 470: 651-687 CrossRef ADS arXiv Google Scholar

[27] Zu Y., Mandelbaum R.. Mon. Not. R. Astron. Soc., 2018, 476: 1637-1653 CrossRef ADS arXiv Google Scholar

[28] Xu, H., Z. Zheng, H. Guo, Y. Zu, I. Zehavi, and D. H. Weinberg,. arXiv Google Scholar

[29] Hinshaw G., Larson D., Komatsu E., Spergel D. N., Bennett C. L., Dunkley J., Nolta M. R., Halpern M., Hill R. S., Odegard N., Page L., Smith K. M., Weiland J. L., Gold B., Jarosik N., Kogut A., Limon M., Meyer S. S., Tucker G. S., Wollack E., Wright E. L.. Astrophys. J. Suppl. Ser., 2013, 208: 19 CrossRef ADS arXiv Google Scholar

[30] Komatsu E., Smith K. M., Dunkley J., Bennett C. L., Gold B., Hinshaw G., Jarosik N., Larson D., Nolta M. R., Page L., Spergel D. N., Halpern M., Hill R. S., Kogut A., Limon M., Meyer S. S., Odegard N., Tucker G. S., Weiland J. L., Wollack E., Wright E. L.. Astrophys. J. Suppl. Ser., 2011, 192: 18 CrossRef ADS arXiv Google Scholar

[31] Ade P. A. R., Aghanim N., Armitage-Caplan C., Arnaud M., Ashdown M., Atrio-Barandela F., Aumont J., Baccigalupi C., Banday A. J., Barreiro R. B., Bartlett J. G., Battaner E., Benabed K., Beno?t A., Benoit-Lévy A., Bernard J. P., Bersanelli M., Bielewicz P., Bobin J., Bock J. J., Bonaldi A., Bond J. R., Borrill J., Bouchet F. R., Bridges M., Bucher M., Burigana C., Butler R. C., Calabrese E., Cappellini B., Cardoso J. F., Catalano A., Challinor A., Chamballu A., Chary R. R., Chen X., Chiang H. C., Chiang L. Y., Christensen P. R., Church S., Clements D. L., Colombi S., Colombo L. P. L., Couchot F., Coulais A., Crill B. P., Curto A., Cuttaia F., Danese L., Davies R. D., Davis R. J., de Bernardis P., de Rosa A., de Zotti G., Delabrouille J., Delouis J. M., Désert F. X., Dickinson C., Diego J. M., Dolag K., Dole H., Donzelli S., Doré O., Douspis M., Dunkley J., Dupac X., Efstathiou G., Elsner F., En?lin T. A., Eriksen H. K., Finelli F., Forni O., Frailis M., Fraisse A. A., Franceschi E., Gaier T. C., Galeotta S., Galli S., Ganga K., Giard M., Giardino G., Giraud-Héraud Y., Gjerl?w E., González-Nuevo J., Górski K. M., Gratton S., Gregorio A., Gruppuso A., Gudmundsson J. E., Haissinski J., Hamann J., Hansen F. K., Hanson D., Harrison D., Henrot-Versillé S., Hernández-Monteagudo C., Herranz D., Hildebrandt S. R., Hivon E., Hobson M., Holmes W. A., Hornstrup A., Hou Z., Hovest W., Huffenberger K. M., Jaffe A. H., Jaffe T. R., Jewell J., Jones W. C., Juvela M., Keih?nen E., Keskitalo R., Kisner T. S., Kneissl R., Knoche J., Knox L., Kunz M., Kurki-Suonio H., Lagache G., L?hteenm?ki A., Lamarre J. M., Lasenby A., Lattanzi M., Laureijs R. J., Lawrence C. R., Leach S., Leahy J. P., Leonardi R., León-Tavares J., Lesgourgues J., Lewis A., Liguori M., Lilje P. B., Linden-V?rnle M., López-Caniego M., Lubin P. M., Macías-Pérez J. F., Maffei B., Maino D., Mandolesi N., Maris M., Marshall D. J., Martin P. G., Martínez-González E., Masi S., Massardi M., Matarrese S., Matthai F., Mazzotta P., Meinhold P. R., Melchiorri A., Melin J. B., Mendes L., Menegoni E., Mennella A., Migliaccio M., Millea M., Mitra S., Miville-Deschênes M. A., Moneti A., Montier L., Morgante G., Mortlock D., Moss A., Munshi D., Murphy J. A., Naselsky P., Nati F., Natoli P., Netterfield C. B., N?rgaard-Nielsen H. U., Noviello F., Novikov D., Novikov I., O'Dwyer I. J., Osborne S., Oxborrow C. A., Paci F., Pagano L., Pajot F., Paladini R., Paoletti D., Partridge B., Pasian F., Patanchon G., Pearson D., Pearson T. J., Peiris H. V., Perdereau O., Perotto L., Perrotta F., Pettorino V., Piacentini F., Piat M., Pierpaoli E., Pietrobon D., Plaszczynski S., Platania P., Pointecouteau E., Polenta G., Ponthieu N., Popa L., Poutanen T., Pratt G. W., Prézeau G., Prunet S., Puget J. L., Rachen J. P., Reach W. T., Rebolo R., Reinecke M., Remazeilles M., Renault C., Ricciardi S., Riller T., Ristorcelli I., Rocha G., Rosset C., Roudier G., Rowan-Robinson M., Rubi?o-Martín J. A., Rusholme B., Sandri M., Santos D., Savelainen M., Savini G., Scott D., Seiffert M. D., Shellard E. P. S., Spencer L. D., Starck J. L., Stolyarov V., Stompor R., Sudiwala R., Sunyaev R., Sureau F., Sutton D., Suur-Uski A. S., Sygnet J. F., Tauber J. A., Tavagnacco D., Terenzi L., Toffolatti L., Tomasi M., Tristram M., Tucci M., Tuovinen J., Türler M., Umana G., Valenziano L., Valiviita J., Van Tent B., Vielva P., Villa F., Vittorio N., Wade L. A., Wandelt B. D., Wehus I. K., White M., White S. D. M., Wilkinson A., Yvon D., Zacchei A., Zonca A.. Astron. Astrophys., 2014, 571: A16 CrossRef ADS arXiv Google Scholar

[32] Efstathiou G., Frenk C. S., White S. D. M., Davis M.. Mon. Not. R. Astron. Soc., 1988, 235: 715-748 CrossRef ADS Google Scholar

[33] Bardeen J. M., Bond J. R., Kaiser N., Szalay A. S.. Astrophys. J., 1986, 304: 15-61 CrossRef ADS Google Scholar

[34] Efstathiou G., Davis M., White S. D. M., Frenk C. S.. Astrophys. J. Suppl. Ser., 1985, 57: 241-260 CrossRef ADS Google Scholar

[35] Jing Y. P., Suto Y., Mo H. J.. Astrophys. J., 2007, 657: 664-668 CrossRef ADS Google Scholar

[36] Han J., Jing Y. P., Wang H., Wang W.. Mon. Not. R. Astron. Soc., 2012, 427: 2437-2449 CrossRef ADS arXiv Google Scholar

  • Figure 1

    (Color online) The mass functions of the halos in WMAP_ 3072_1200 (red dots) and in two realizations (blue and green lines respectively) of WMAP_3072_600.

  • Table 1   The model parameters of $\Lambda{\rm~CDM}$ simulations
    Model $\Omega_\text{b}$ $\Omega_\text{c}$ $\Omega_\Lambda$ $h$ $n_\text{s}$ $\sigma_8$
    Planck $\Lambda{\rm~CDM}$ $0.0487$$0.2663$$0.685$$0.673$$0.9603$$0.829$
    WMAP $\Lambda{\rm~CDM}$ $0.0445$$0.2235$$0.732$$0.71$$0.968$$0.83$
  • Table 2   The model parameters of the SF simulations
    Model $\Omega_\text{c}$ $\Omega_\Lambda$ $n$$A$
    SFn0 $1$$0$$0$$0.7314$
    SFn-1 $1$$0$$-1$$0.5629$
    SFn-1p5 $1$$0$$-1.5$$0.4891$
    SFn-2 $1$$0$$-2$$0.4241$
  • Table 3   The model parameters of the XCDM simulations
    Model $\Omega_\text{b}$ $\Omega_\text{c}$ $\Omega_\Lambda$ $n_\text{s}$ $\sigma_8$ Linear $P(k)$
    XCDM1 $0.0$$1.0$$0$$0.968$$0.83$ WMAP $\Lambda{\rm~CDM}$
    XCDM2 $0.0$$1.0$$0$$1.0$$0.83$ BBKS
  • Table 4   The $\Lambda{\rm~CDM}$ simulations and the simulation parameters
    Name Model $N_\text{p}$ $L$ $\text{d}a$$\eta$$z_i$ $N_{\text{step}}$ $z_{\text{out},1}$$N_{\text{snap}}$Realizations
    Planck_2048_400Planck $\Lambda{\rm~CDM}$ $2048^3$$400$$0.0288$$0.007$$144$$5000$$16.87$$100$1
    Planck_2048_1200Planck $\Lambda{\rm~CDM}$ $2048^3$$1200$$0.06$$0.03$$72$$1200$$7.30$$24$1
    WMAP_2048_400Planck $\Lambda{\rm~CDM}$ $2048^3$$400$$0.0288$$0.007$$144$$5000$$16.87$$100$1
    WMAP_2048_1200Planck $\Lambda{\rm~CDM}$ $2048^3$$1200$$0.06$$0.03$$72$$1200$$7.30$$24$1
    WMAP_3072_600Planck $\Lambda{\rm~CDM}$ $3072^3$$600$$0.0288$$0.01$$144$$5000$$16.87$$100$3
    WMAP_3072_1200Planck $\Lambda{\rm~CDM}$ $3072^3$$1200$$0.0288$$0.02$$144$$5000$$16.87$$100$1
  • Table 5   The XCDM simulations and the simulation parameters
    Name Model $N_\text{p}$ $L$ $\text{d}a$$\eta$$z_i$ $N_{\text{step}}$ $z_{\text{out},1}$$N_{\text{snap}}$Realizations
    XCDM1_2048_1200XCDM1 $2048^3$$1200$$0.06$$0.03$$72$$1200$$7.30$$24$1
    XCDM2_2048_1200XCDM2 $2048^3$$1200$$0.06$$0.03$$72$$1200$$7.30$$24$1
  • Table 6   The SF simulations and the simulation parameters
    Name Model $N_\text{p}$ $\text{d}p$$\eta$$z_i$ $N_{\text{step}}$ $p_{\text{out},1}$$N_{\text{snap}}$Realizations
    SFn0_2048SFn0 $2048^3$$0.0202$$0.125\times~10^{-4}$$1029.15$$5000$$2.37$$50$2
    SFn-1_2048SFn-1 $2048^3$$0.0302$$0.125\times~10^{-4}$$151.00$$5000$$3.54$$50$2
    SFn-1p5_2048SFn-1p5 $2048^3$$0.0401$$0.125\times~10^{-4}$$52.51$$5000$$4.69$$50$2
    SFn-2_2048SFn-2 $2048^3$$0.0602$$0.125\times~10^{-4}$$16.38$$5000$$7.02$$50$1

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号