logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 62, Issue 5: 959503(2019) https://doi.org/10.1007/s11433-018-9372-7

Study of three rotating radio transients with FAST

More info
  • ReceivedDec 7, 2018
  • AcceptedFeb 21, 2019
  • PublishedMar 19, 2019
PACS numbers

Abstract

Rotating radio transients (RRATs) are peculiar astronomical objects whose emission mechanism remains under investigation. In this paper, we present observations of three RRATs, J1538+2345, J1854+0306 and J1913+1330, carried out with the Five-hundred-meter Aperture Spherical radio Telescope (FAST).Specifically, we analyze the mean pulse profiles and temporal flux density evolutions of the RRATs.Owing to the high sensitivity of FAST, the derived burst rates of the three RRATsare higher than those in previous reports.RRAT J1854+0306 exhibited a time-dynamic mean pulse profile,whereas RRAT J1913+1330 showed distinct radiation and nulling segments on its pulse intensity trains.The mean pulse profile variation with frequency is also studied for RRAT J1538+2345 and RRAT J1913+1330,and the profiles at different frequencies could be well fitted with a cone-core model and a conal-beam model, respectively.


Acknowledgment

This work was supported by the National Key R&D Program of China (Grant No. 2018YFA0404703), the National Natural Science Foundation of China (Grant No. 11225314), the Open Project Program of the Key Laboratory of FAST, NAOC, Chinese Academy of Sciences, and the Project of Chinese Academy of Sciences (CAS) and the Max-Planck-Society (MPS) Collaboration. This work made use of the data from the FAST telescope (Five-hundred-meter Aperture Spherical radio Telescope). FAST is a Chinese national mega-science facility, built and operated by the National Astronomical Observatories, Chinese Academy of Sciences. The FAST FELLOWSHIP was supported by the Special Funding for Advanced Users, budgeted and administrated by Center for Astronomical Mega-Science, Chinese Academy of Sciences (CAMS). Kuo Liu acknowledges the financial support by the European Research Council for the ERC Synergy Grant BlackHoleCam (Grant No. 610058). YouLing Yue was supported by the National Key R&D Program of China (Grant No. 2017YFA0402600), and the Chinese Academy of Sciences “Light of West China” Program. We would like to thank Laura Spitler for carefully proofing read.


References

[1] McLaughlin M. A., Lyne A. G., Lorimer D. R., Kramer M., Faulkner A. J., Manchester R. N., Cordes J. M., Camilo F., Possenti A., Stairs I. H., Hobbs G., D'Amico N., Burgay M., O'Brien J. T.. Nature, 2006, 439: 817-820 CrossRef PubMed ADS Google Scholar

[2] Keane E. F., Kramer M., Lyne A. G., Stappers B. W., McLaughlin M. A.. Mon. Not. R. Astron. Soc., 2011, 415: 3065-3080 CrossRef ADS arXiv Google Scholar

[3] Bhattacharyya B., Lyne A. G., Stappers B. W., Weltevrede P., Keane E. F., McLaughlin M. A., Kramer M., Jordan C., Bassa C.. Mon. Not. R. Astron. Soc., 2018, 477: 4090-4103 CrossRef ADS arXiv Google Scholar

[4] Camilo F., Cognard I., Ransom S. M., Halpern J. P., Reynolds J., Zimmerman N., Gotthelf E. V., Helfand D. J., Demorest P., Theureau G., Backer D. C.. Astrophys. J., 2007, 663: 497-504 CrossRef ADS Google Scholar

[5] Weltevrede P., Stappers B. W., Rankin J. M., Wright G. A. E.. Astrophys. J., 2006, 645: L149-L152 CrossRef ADS Google Scholar

[6] Wang N., Manchester R. N., Johnston S.. Mon. Not. R. Astron. Soc., 2007, 377: 1383-1392 CrossRef ADS Google Scholar

[7] McLaughlin M. A., Lyne A. G., Keane E. F., Kramer M., Miller J. J., Lorimer D. R., Manchester R. N., Camilo F., Stairs I. H.. Mon. Not. R. Astron. Soc., 2009, 400: 1431-1438 CrossRef ADS arXiv Google Scholar

[8] B. Peng, R. G. Strom, R. Nan, et al., Perspectives on Radio Astronomy: Science with Large Antenna Arrays, 25 (2000). Google Scholar

[9] B. Peng, R. Nan & Y. Su, in Proposed world's largest single dish: FAST: Proceedings Volume 4015, Radio Telescopes (SPIE, Munich, 2000). Google Scholar

[10] P. Jiang, Y. L. Yue, H. Q. Gan, et al., Sci. China-Phys. Mech. Astron. submitted. Google Scholar

[11] Hotan A. W., van Straten W., Manchester R. N.. Publ. Astron. Soc. Aust, 2004, 21: 302-309 CrossRef ADS Google Scholar

[12] Karako-Argaman C., Kaspi V. M., Lynch R. S., Hessels J. W. T., Kondratiev V. I., McLaughlin M. A., Ransom S. M., Archibald A. M., Boyles J., Jenet F. A., Kaplan D. L., Levin L., Lorimer D. R., Madsen E. C., Roberts M. S. E., Siemens X., Stairs I. H., Stovall K., Swiggum J. K., Leeuwen J.. Astrophys. J., 2015, 809: 67 CrossRef ADS arXiv Google Scholar

[13] Hobbs G. B., Edwards R. T., Manchester R. N.. Mon. Not. R. Astron. Soc., 2006, 369: 655-672 CrossRef ADS Google Scholar

[14] Edwards R. T., Hobbs G. B., Manchester R. N.. Mon. Not. R. Astron. Soc., 2006, 372: 1549-1574 CrossRef ADS Google Scholar

[15] Manchester R. N., Hobbs G. B., Teoh A., Hobbs M.. AJ, 2005, 129: 1993-2006 CrossRef ADS Google Scholar

[16] Rankin J. M.. Astrophys. J., 1983, 274: 333-368 CrossRef ADS Google Scholar

[17] Lu J. G., Du Y. J., Hao L. F., Yan Z., Liu Z. Y., Lee K. J., Qiao G. J., Shang L. H., Wang M., Xu R. X., Yue Y. L., Zhi Q. J.. Astrophys. J., 2016, 816: 76 CrossRef ADS arXiv Google Scholar

[18] Deneva J. S., Cordes J. M., McLaughlin M. A., Nice D. J., Lorimer D. R., Crawford F., Bhat N. D. R., Camilo F., Champion D. J., Freire P. C. C., Edel S., Kondratiev V. I., Hessels J. W. T., Jenet F. A., Kasian L., Kaspi V. M., Kramer M., Lazarus P., Ransom S. M., Stairs I. H., Stappers B. W., van Leeuwen J., Brazier A., Venkataraman A., Zollweg J. A., Bogdanov S.. Astrophys. J., 2009, 703: 2259-2274 CrossRef ADS arXiv Google Scholar

[19] Losovsky B. Y., Dumsky D. V.. Astron. Rep., 2014, 58: 537-544 CrossRef ADS Google Scholar

[20] Palliyaguru N. T., McLaughlin M. A., Keane E. F., Kramer M., Lyne A. G., Lorimer D. R., Manchester R. N., Camilo F., Stairs I. H.. Mon. Not. R. Astron. Soc., 2011, 417: 1871-1880 CrossRef ADS arXiv Google Scholar

[21] Knight H. S., Bailes M., Manchester R. N., Ord S. M., Jacoby B. A.. Astrophys. J., 2006, 640: 941-949 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) Intensity time series of single pulse detections from RRAT J1538+2345. Each peak represents the intensity of one pulse cycle. The blue dotted line indicates 10 times the rms of the off-pulse region.

  • Figure 2

    Mean pulse profiles of RRAT J1538+2345 during each observation epoch.

  • Figure 3

    (Color online) Multi-frequency profiles of RRAT J1538+2345 (black curves). The blue and red curves are fitted by eqs. (1) and (4), respectively.

  • Figure 4

    (Color online) As Figure 1, but for RRAT J1854+0306.

  • Figure 5

    As Figure 2, but plotted for RRAT J1854+0306.

  • Figure 6

    (Color online) Fluxes of pulse-on phase intervals of RRAT J1913+1330 at different frequency bands. The blue dotted lines in left panel indicate 10 times the rms of the pulse-off phase intervals. The radiation segments are numbered successively.

  • Figure 7

    Mean pulse profiles of RRAT J1538+2345 in each radiation segment shown in Figure 6.

  • Figure 8

    (Color online) Multi-frequency profiles of RRAT J1913+1330 (black curves). The red curves are fitted by eq. (1). The narrow bands at 300, 350 and 400 MHz were not fitted due to the strong scattering widening phenomena in their pulse profiles.

  • Table 1   Observing information
    2[0]*Source Obs date Obs band Total Burst
    (MJD) (MHz) pulses pulses
    4[0]*RRAT J1538+2345 58338 1000-1500 521 183
    58359 1000-1500 521 179
    58395 1000-1500 521 108
    58407 1000-1500 521 134
    2[0]*RRAT J1854+0306 58391 1000-1500 394 46
    58395 1000-1500 394 56
    5[0]*RRAT J1913+1330 58085 270-800, 1200-1620 1975$^{\rm~a)}$ 27
    58140 270-800, 1200-1620 1977 0
    58144 270-800, 1200-1620 1891 24
    58149 270-800, 1200-1620 1777 167
    58179 270-800, 1200-1620 1919 169

    a

  • Table 2   RRAT burst rates obtained from the data of different telescopes
    2[0]*Source
    2[0]*Telescope Frequency Bandwidth Burst rate
    (MHz) (MHz) (h$^{-1}$)
    3[0]*RRAT J1538+2345 LOFAR 150 80 66$\pm$7 [12]
    GBT 350 100 77$\pm$14 [12]
    FAST 1250 400 302$\pm$12$^{\rm~a)}$
    3[0]*RRAT J1854+0306 Parkes 1374 288 8.9 [2]
    Arecibo 1440 100 84 [16]
    FAST 1250 400 102$\pm$10
    5[0]*RRAT J1913$+$1330 Parkes 1400 256 7.3$^{\rm~b)}$ [17]
    Parkes 1390 256 13 [7]
    Lovell 1402 64 1.5 [7]
    Lovell 1400 300 4.7$\pm$0.2 [3]
    FAST 525 500 155$\pm$8

    a

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号