logo

More info
  • ReceivedDec 17, 2018
  • AcceptedMar 5, 2019
  • PublishedAug 4, 2019
PACS numbers

Abstract

The Giant Radio Array for Neutrino Detection (GRAND) is a planned large-scale observatory of ultra-high-energy (UHE) cosmic particles, with energies exceeding $10^8$ GeV. Its goal is to solve the long-standing mystery of the origin of UHE cosmic rays. To do this, GRAND will detect an unprecedented number of UHE cosmic rays and search for the undiscovered UHE neutrinos and gamma rays associated to them with unmatched sensitivity. GRAND will use large arrays of antennas to detect the radio emission coming from extensive air showers initiated by UHE particles in the atmosphere. Its design is modular: 20 separate, independent sub-arrays, each of 10000 radio antennas deployed over 10000 km$^2$. A staged construction plan will validate key detection techniques while achieving important science goals early. Here we present the science goals, detection strategy, preliminary design, performance goals, and construction plans for GRAND.


Acknowledgment

The GRAND project is supported by the APACHE of the French Agence Nationale de la Recherche (Grant No. ANR-16-CE31-0001), the France-China Particle Physics Laboratory, the China Exchange Program from the Royal Netherlands Academy of Arts and Sciences and the Chinese Academy of Sciences, the Key Projects of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDY-SSW-SLH022), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB23000000), and the National Key RD Program of China (Grant No. 2018YFA0404601). Rafael Alves Batista is supported by S ao Paulo Research Foundation (FAPESP) (Grant No. 2017/12828-4). Mauricio Bustamante is partially supported from National Science Foundation (Grant Nos. PHY-1404311, and PHY-1714479). Mauricio Bustamante and Peter B. Denton are supported by Danish National Research Foundation (DNRF91), Danmarks Grundforskningsfond (Grant No. 1041811001), and sc Villum Fonden (Grant No. 13164). Washington Carvalho Jr. is supported by S ao Paulo Research Foundation (FAPESP) (Grant No. 2015/15735-1). QuanBu Gou is supported by the National Natural Science Foundation of China (Grant No. 11375209). Krijn D. De Vries is supported by the Flemish Foundation for Scientific Research (Grant No. FWO-12L3715N – K. D. de Vries). Charles Timmermans is supported by the Netherlands Organisation for Scientific Research (NWO). XiangPing Wu is supported by the Key Projects of Frontier Science of Chinese Academy of Sciences, (Grant No. QYZDY-SSW-SLH022), and the Strategic Priority Research Program of Chinese Academy of Sciences, (Grant No. XDB23000000). JianLi Zhang is supported by the National Natural Science Foundation of China (Grant No. 11505213), and “Data analysis for radio detection array at 21CMA base”. We thank Markus Ahlers, Daniel Ardouin, Johannes Blümer, Jordan Hanson, Andreas Haungs, Naoko Kurahashi, Pascal Lautridou, François Montanet, Angela Olinto, Andres Romero-Wolf, Subir Sarkar, Abigail Vieregg, and Stephanie Wissel for useful discussion and comments on the manuscript; Feng Yang and the staff in Ulastai; the engineers who developed the GRANDProto35 electronics, Julien Coridian, Jacques David, Olivier Le Dortz, David Martin, and Patrick Nayman; and the groups of FuShun Zhang and LiXin Guo, who built the GRANDProto35 antennas and the sc HorizonAntenna prototypes. The GRAND neutrino simulations were run through the France-Asia Virtual Organisation on the IN2P3 computing center, the GRIF-LPNHE computing grid, the IHEP computing center. Part of the simulations was performed on the computational resource ForHLR I funded by the Ministry of Science, Research and the Arts Baden-Württemberg and DFG (“Deutsche Forschungsgemeinschaft"). The GRAND cosmic-ray simulations were run on the Horizon Cluster, hosted by the Institut d'Astrophysique de Paris. The SRTMGL1 (v3) topographical data used in this study were retrieved from the online USGS EarthExplorer and NASA Earthdata Search tools, courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. Figures 2 and 16 were designed for the GRAND Collaboration by Ingrid Delgado.


References

[1] Kotera K., Olinto A. V.. Annu. Rev. Astron. Astrophys., 2011, 49: 119-153 CrossRef ADS arXiv Google Scholar

[2] Greisen K.. Phys. Rev. Lett., 1966, 16: 748-750 CrossRef ADS Google Scholar

[3] G. T. Zatsepin, and V. A. Kuzmin, JETP Lett. 4, 78 (1966). Google Scholar

[4] Aartsen M. G.. (IceCube Collaboration). Phys. Rev. Lett., 2013, 111: 021103 CrossRef PubMed ADS arXiv Google Scholar

[5] Aartsen M. G.. (IceCube Collaboration). Science, 2013, 342: 1242856-1242856 CrossRef PubMed ADS arXiv Google Scholar

[6] Aartsen M. G.. (IceCube Collaboration). Phys. Rev. Lett., 2014, 113: 101101 CrossRef PubMed ADS arXiv Google Scholar

[7] Aartsen M. G.. (IceCube Collaboration). Phys. Rev. Lett., 2015, 115: 081102 CrossRef PubMed ADS arXiv Google Scholar

[8] Aartsen M. G.. (IceCube Collaboration). Astrophys. J., 2016, 833: 3 CrossRef ADS arXiv Google Scholar

[9] Abbott B. P.. (LIGO Scientific Collaboration, Virgo Collaboration, Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, IPN Collaboration, The Insight-Hxmt Collaboration, ANTARES Collaboration, The Swift Collaboration, AGILE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration, the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, OzGrav, DWF: (Deeper, Wider, Faster Program), AST3, CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWTH, JAGWAR, Caltech- NRAO, TTU-NRAO, NuSTAR Collaborations, Pan-STARRS, The MAXI Team, TZAC Consortium, KU Collaboration, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South Collaboration, The BOOTES Collaboration, MWA: Murchison Widefield Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA: Long Wavelength Array, HAWC Collaboration, The Pierre Auger Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS, RATIR, SKA South Africa/MeerKAT). Astrophys. J. Lett., 2017, 848: L12 CrossRef ADS arXiv Google Scholar

[10] Ackermann M.. (The Fermi LAT Collaboration). Astrophys. J., 2015, 799: 86 CrossRef ADS arXiv Google Scholar

[11] Ackermann M.. (The Fermi LAT Collaboration). Phys. Rev. Lett., 2016, 116: 151105 CrossRef PubMed ADS arXiv Google Scholar

[12] M. G. Aartsen, et al. (IceCube Collaboration),. arXiv Google Scholar

[13] Apel W. D., Arteaga-Velázquez J. C., Bekk K., Bertaina M., Blümer J., Bozdog H., Brancus I. M., Cantoni E., Chiavassa A., Cossavella F., Daumiller K., de Souza V., Di Pierro F., Doll P., Engel R., Engler J., Finger M., Fuchs B., Fuhrmann D., Gils H. J., Glasstetter R., Grupen C., Haungs A., Heck D., H?randel J. R., Huber D., Huege T., Kampert K. H., Kang D., Klages H. O., Link K., ?uczak P., Ludwig M., Mathes H. J., Mayer H. J., Melissas M., Milke J., Mitrica B., Morello C., Oehlschl?ger J., Ostapchenko S., Palmieri N., Petcu M., Pierog T., Rebel H., Roth M., Schieler H., Schoo S., Schr?der F. G., Sima O., Toma G., Trinchero G. C., Ulrich H., Weindl A., Wochele J., Wommer M., Zabierowski J.. Astropart. Phys., 2013, 47: 54-66 CrossRef ADS arXiv Google Scholar

[14] A. Aab, et al. (The Pierre Auger Collaboration),. arXiv Google Scholar

[15] C. Jui, in Proceedings of the 34th International Cosmic Ray Conference (ICRC 2015), The Hague, The Netherlands, July 30-August 6, 2015, (PoS, The Hague, 2016), p. 035. Google Scholar

[16] Batista R. A., de Almeida R. M., Lago B., Kotera K.. J. Cosmol. Astropart. Phys., 2019, 2019(01): 002-002 CrossRef ADS arXiv Google Scholar

[17] Decerprit G., Allard D.. Astron. Astrophys., 2011, 535: A66 CrossRef ADS arXiv Google Scholar

[18] Beresinsky V. S., Zatsepin G. T.. Phys. Lett. B, 1969, 28: 423-424 CrossRef ADS Google Scholar

[19] K. Møller, and P. B. Denton, and I. Tamborra,. arXiv Google Scholar

[20] Bustamante M., Beacom J. F., Winter W.. Phys. Rev. Lett., 2015, 115: 161302 CrossRef PubMed ADS arXiv Google Scholar

[21] Batista R. A., Dundovic A., Erdmann M., Kampert K. H., Kuempel D., Müller G., Sigl G., Vliet A., Walz D., Winchen T.. J. Cosmol. Astropart. Phys., 2016, 2016(05): 038-038 CrossRef ADS arXiv Google Scholar

[22] I. Valino, et al. (The Pierre Auger Collaboration), in Proceedings of the 34th International Cosmic Ray Conference (ICRC 2015), The Hague, The Netherlands, July 30-August 6, 2015, (PoS, The Hague, 2015), p. 271. Google Scholar

[23] Aab A.. (The Pierre Auger Collaboration). Phys. Rev. D, 2014, 90: 122005 CrossRef ADS arXiv Google Scholar

[24] Taylor A. M., Ahlers M., Hooper D.. Phys. Rev. D, 2015, 92: 063011 CrossRef ADS arXiv Google Scholar

[25] Aartsen M. G.. (IceCube Collaboration). Astrophys. J., 2015, 809: 98 CrossRef ADS arXiv Google Scholar

[26] Aartsen M. G.. (IceCube Collaboration). Phys. Rev. D, 2018, 98: 062003 CrossRef ADS arXiv Google Scholar

[27] Aab A.. (Pierre Auger Collaboration). Phys. Rev. D, 2015, 91: 092008 CrossRef ADS arXiv Google Scholar

[28] Gorham P. W.. (ANITA Collaboration). Phys. Rev. D, 2018, 98: 022001 CrossRef ADS arXiv Google Scholar

[29] Allison P.. (The ARA collaboration). Phys. Rev. D, 2016, 93: 082003 CrossRef ADS arXiv Google Scholar

[30] C. R. Persichilli, Performance and Simulation of the ARIANNA Pilot Array, with Implications for Future Ultra-high Energy Neutrino Astronomy, Dissertation for the Doctoral Degree (University Of California, Irvine, 2018). Google Scholar

[31] J. Krizmanic, in POEMMA: Probe Of Multi-Messenger Astrophysics, Talk given at the Ultra High Energy Cosmic Rays Conference 2018 (UHECR 2018), Paris, France, October 08-12, 2018 (Paris, 2018). Google Scholar

[32] M. Sasaki, and T. Kifune, in Proceedings of the 7th International Workshop on Very High Energy Particle Astronomy (VHEPA2014), Chiba, Japan, March 19-20, 2014, Vol. 15 (Chiba, 2017), p. 011013. Google Scholar

[33] A. N. Otte,. arXiv Google Scholar

[34] Góra D., Bernardini E.. Astropart. Phys., 2016, 82: 77-85 CrossRef ADS arXiv Google Scholar

[35] T. Liu, in The status of the second station of Taiwan Astroparticle Radiowave Observatory for Geo-synchrotron Emissions (TAROGE-II): Proceedings of the 35th International Cosmic Ray Conference (ICRC2017) (PoS, 2018), p. 234. Google Scholar

[36] S. Wissel, in A New Concept for High-Elevation Radio Detection of Tau Neutrinos: Talk given at the Acoustic and Radio EeV Neutrino Detection Activities Conference 2018 (ARENA 2018) (Catania, 2018). Google Scholar

[37] Barwick S. W.. (The ARIANNA Collaboration). Astropart. Phys., 2015, 70: 12-26 CrossRef ADS arXiv Google Scholar

[38] A. van Vliet, J. R. Hörandel, and R. A. Batista, in Cosmogenic Gamma-rays and Neutrinos Constrain UHECR Source Models: Proceedings of the 35th ICRC, 562 (PoS, Busan, 2017), p. 562. Google Scholar

[39] A. van Vliet, R. A. Batista, and J. R. Horandel,. arXiv Google Scholar

[40] Stecker F. W., Done C., Salamon M. H., Sommers P.. Phys. Rev. Lett., 1991, 66: 2697-2700 CrossRef PubMed ADS Google Scholar

[41] Murase K., Inoue Y., Dermer C. D.. Phys. Rev. D, 2014, 90: 023007 CrossRef ADS arXiv Google Scholar

[42] K. Murase,. arXiv Google Scholar

[43] Waxman E., Bahcall J.. Phys. Rev. D, 1998, 59: 023002 CrossRef ADS arXiv Google Scholar

[44] He H. N., Liu R. Y., Wang X. Y., Nagataki S., Murase K., Dai Z. G.. Astrophys. J., 2012, 752: 29 CrossRef ADS arXiv Google Scholar

[45] Murase K., Nagataki S.. Phys. Rev. D, 2006, 73: 063002 CrossRef ADS arXiv Google Scholar

[46] Bustamante M., Baerwald P., Murase K., Winter W.. Nat. Commun., 2015, 6: 6783 CrossRef PubMed ADS arXiv Google Scholar

[47] Bustamante M., Heinze J., Murase K., Winter W.. Astrophys. J., 2017, 837: 33 CrossRef ADS arXiv Google Scholar

[48] Murase K., Ioka K., Nagataki S., Nakamura T.. Astrophys. J., 2006, 651: L5-L8 CrossRef ADS arXiv Google Scholar

[49] Murase K., Ioka K., Nagataki S., Nakamura T.. Phys. Rev. D, 2008, 78: 023005 CrossRef ADS arXiv Google Scholar

[50] Murase K., Inoue S., Nagataki S.. Astrophys. J., 2008, 689: L105-L108 CrossRef ADS arXiv Google Scholar

[51] Kotera K., Allard D., Murase K., Aoi J., Dubois Y., Pierog T., Nagataki S.. Astrophys. J., 2009, 707: 370-386 CrossRef ADS arXiv Google Scholar

[52] Fang K., Olinto A. V.. Astrophys. J., 2016, 828: 37 CrossRef ADS arXiv Google Scholar

[53] Fang K., Murase K.. Nat. Phys., 2018, 14: 396-398 CrossRef ADS arXiv Google Scholar

[54] Murase K., Mészáros P., Zhang B.. Phys. Rev. D, 2009, 79: 103001 CrossRef ADS arXiv Google Scholar

[55] Fang K., Kotera K., Murase K., Olinto A. V.. Phys. Rev. D, 2014, 90: 103005 CrossRef ADS arXiv Google Scholar

[56] Fang K., Kotera K., Miller M. C., Murase K., Oikonomou F.. J. Cosmol. Astropart. Phys., 2016, 2016(12): 017-017 CrossRef ADS arXiv Google Scholar

[57] Fang K., Miller M. C.. Astrophys. J., 2016, 826: 102 CrossRef ADS arXiv Google Scholar

[58] Aartsen M. G.. (IceCube Collaboration). Phys. Rev. Lett., 2016, 117: 241101 CrossRef PubMed ADS arXiv Google Scholar

[59] Murase K.. Phys. Rev. D, 2007, 76: 123001 CrossRef ADS arXiv Google Scholar

[60] Ajello M.. (The Fermi-LAT Collaboration). Astrophys. J. Suppl. Ser., 2017, 232: 18 CrossRef ADS arXiv Google Scholar

[61] Kimura S. S., Murase K., Mészáros P., Kiuchi K.. Astrophys. J., 2017, 848: L4 CrossRef ADS arXiv Google Scholar

[62] Guépin C., Kotera K., Barausse E., Fang K., Murase K.. Astron. Astrophys., 2018, 616: A179 CrossRef ADS arXiv Google Scholar

[63] Zhang B. B., Zhang B., Sun H., Lei W. H., Gao H., Li Y., Shao L., Zhao Y., Hu Y. D., Lü H. J., Wu X. F., Fan X. L., Wang G., Castro-Tirado A. J., Zhang S., Yu B. Y., Cao Y. Y., Liang E. W.. Nat. Commun., 2018, 9: 447 CrossRef PubMed ADS arXiv Google Scholar

[64] Guépin C., Kotera K.. Astron. Astrophys., 2017, 603: A76 CrossRef ADS arXiv Google Scholar

[65] Colladay D., Kostelecky V. A.. Phys. Rev. D, 1998, 58: 116002 CrossRef ADS arXiv Google Scholar

[66] Kostelecky V. A., Mewes M.. Phys. Rev. D, 2004, 70: 031902 CrossRef ADS arXiv Google Scholar

[67] Alan Kostelecky V., Mewes M.. Phys. Rev. D, 2004, 69: 016005 CrossRef ADS arXiv Google Scholar

[68] Díaz J. S., Kostelecky V. A.. Phys. Rev. D, 2012, 85: 016013 CrossRef ADS arXiv Google Scholar

[69] Kostelecky V. A., Mewes M.. Phys. Rev. D, 2012, 85: 096005 CrossRef ADS arXiv Google Scholar

[70] Abbasi R.. (IceCube Collaboration). Phys. Rev. D, 2010, 82: 112003 CrossRef ADS arXiv Google Scholar

[71] Abe K.. (Super-Kamiokande Collaboration). Phys. Rev. D, 2015, 91: 052003 CrossRef ADS arXiv Google Scholar

[72] Baerwald P., Bustamante M., Winter W.. J. Cosmol. Astropart. Phys., 2012, 2012(10): 020-020 CrossRef ADS arXiv Google Scholar

[73] Shoemaker I. M., Murase K.. Phys. Rev. D, 2016, 93: 085004 CrossRef ADS arXiv Google Scholar

[74] Bustamante M., Beacom J. F., Murase K.. Phys. Rev. D, 2017, 95: 063013 CrossRef ADS arXiv Google Scholar

[75] Ioka K., Murase K.. Prog. Theor. Exp. Phys., 2014, 2014(6): 61E01-0 CrossRef ADS arXiv Google Scholar

[76] Ng K. C. Y., Beacom J. F.. Phys. Rev. D, 2014, 90: 089904 CrossRef ADS Google Scholar

[77] K. Blum, A. Hook, and K. Murase,. arXiv Google Scholar

[78] DiFranzo A., Hooper D.. Phys. Rev. D, 2015, 92: 095007 CrossRef ADS arXiv Google Scholar

[79] Araki T., Kaneko F., Ota T., Sato J., Shimomura T.. Phys. Rev. D, 2016, 93: 013014 CrossRef ADS arXiv Google Scholar

[80] Kopp J., Liu J., Wang X. P.. J. High Energ. Phys., 2015, 2015(4): 105 CrossRef ADS arXiv Google Scholar

[81] J. H. Davis, and J. Silk,. arXiv Google Scholar

[82] Reynoso M. M., Sampayo O. A.. Astropart. Phys., 2016, 82: 10-20 CrossRef ADS arXiv Google Scholar

[83] Kashti T., Waxman E.. Phys. Rev. Lett., 2005, 95: 181101 CrossRef PubMed ADS arXiv Google Scholar

[84] Lipari P., Lusignoli M., Meloni D.. Phys. Rev. D, 2007, 75: 123005 CrossRef ADS arXiv Google Scholar

[85] Aartsen M. G.. (IceCube Collaboration). Nature, 2017, 551: 596-600 CrossRef PubMed ADS arXiv Google Scholar

[86] Bustamante M., Connolly A.. Phys. Rev. Lett., 2019, 122: 041101 CrossRef PubMed ADS arXiv Google Scholar

[87] Blennow M., Meloni D.. Phys. Rev. D, 2009, 80: 065009 CrossRef ADS arXiv Google Scholar

[88] Connolly A., Thorne R. S., Waters D.. Phys. Rev. D, 2011, 83: 113009 CrossRef ADS arXiv Google Scholar

[89] Gonzalez-Garcia M. C., Maltoni M., Martinez-Soler I., Song N.. Astropart. Phys., 2016, 84: 15-22 CrossRef ADS arXiv Google Scholar

[90] Argüelles C. A., Kheirandish A., Vincent A. C.. Phys. Rev. Lett., 2017, 119: 201801 CrossRef PubMed ADS arXiv Google Scholar

[91] Pakvasa S.. Lett. Nuovo Cimento, 1981, 31: 497-498 CrossRef Google Scholar

[92] Barenboim G., Quigg C.. Phys. Rev. D, 2003, 67: 073024 CrossRef ADS arXiv Google Scholar

[93] Xing Z., Zhou S.. Phys. Rev. D, 2006, 74: 013010 CrossRef ADS arXiv Google Scholar

[94] Pakvasa S., Rodejohann W., Weiler T. J.. J. High Energy Phys., 2008, 2008(02): 005-005 CrossRef ADS arXiv Google Scholar

[95] Esmaili A., Farzan Y.. Nucl. Phys. B, 2009, 821: 197-214 CrossRef ADS arXiv Google Scholar

[96] Lai K. C., Lin G. L., Liu T. C.. Phys. Rev. D, 2009, 80: 103005 CrossRef ADS arXiv Google Scholar

[97] Choubey S., Rodejohann W.. Phys. Rev. D, 2009, 80: 113006 CrossRef ADS arXiv Google Scholar

[98] Bustamante M., Gago A. M., Pe?a-Garay C.. J. High Energ. Phys., 2010, 2010(4): 66 CrossRef ADS arXiv Google Scholar

[99] Mehta P., Winter W.. J. Cosmol. Astropart. Phys., 2011, 2011(03): 041-041 CrossRef ADS arXiv Google Scholar

[100] Pakvasa S., Joshipura A., Mohanty S.. Phys. Rev. Lett., 2013, 110: 171802 CrossRef PubMed ADS arXiv Google Scholar

[101] Dorame L., Miranda O. G., Valle J. W. F.. Front. Phys., 2013, 1: 25 CrossRef ADS arXiv Google Scholar

[102] Mena O., Palomares-Ruiz S., Vincent A. C.. Phys. Rev. Lett., 2014, 113: 091103 CrossRef PubMed ADS arXiv Google Scholar

[103] Xu X. J., He H. J., Rodejohann W.. J. Cosmol. Astropart. Phys., 2014, 2014(12): 039-039 CrossRef ADS arXiv Google Scholar

[104] Aeikens E., P?s H., Pakvasa S., Sicking P.. J. Cosmol. Astropart. Phys., 2015, 2015(10): 005-005 CrossRef ADS arXiv Google Scholar

[105] Fu L., Ho C. M., Weiler T. J.. Phys. Rev. D, 2015, 91: 053001 CrossRef ADS arXiv Google Scholar

[106] Palladino A., Pagliaroli G., Villante F. L., Vissani F.. Phys. Rev. Lett., 2015, 114: 171101 CrossRef PubMed ADS arXiv Google Scholar

[107] Palomares-Ruiz S., Vincent A. C., Mena O.. Phys. Rev. D, 2015, 91: 103008 CrossRef ADS arXiv Google Scholar

[108] Aartsen M. G.. (IceCube Collaboration). Phys. Rev. Lett., 2015, 114: 171102 CrossRef PubMed ADS arXiv Google Scholar

[109] Palladino A., Vissani F.. Eur. Phys. J. C, 2015, 75: 433 CrossRef ADS arXiv Google Scholar

[110] Argüelles C. A., Katori T., Salvado J.. Phys. Rev. Lett., 2015, 115: 161303 CrossRef PubMed ADS arXiv Google Scholar

[111] Nunokawa H., Panes B., Funchal R. Z.. J. Cosmol. Astropart. Phys., 2016, 2016(10): 036-036 CrossRef ADS arXiv Google Scholar

[112] Vincent A. C., Palomares-Ruiz S., Mena O.. Phys. Rev. D, 2016, 94: 023009 CrossRef ADS arXiv Google Scholar

[113] Brdar V., Kopp J., Wang X. P.. J. Cosmol. Astropart. Phys., 2017, 2017(01): 026-026 CrossRef ADS arXiv Google Scholar

[114] Bustamante M., Agarwalla S. K.. Phys. Rev. Lett., 2019, 122: 061103 CrossRef PubMed ADS arXiv Google Scholar

[115] Ahlers M., Bustamante M., Mu S.. Phys. Rev. D, 2018, 98: 123023 CrossRef ADS arXiv Google Scholar

[116] Lindner M., Ohlsson T., Winter W.. Nucl. Phys. B, 2001, 607: 326-354 CrossRef ADS arXiv Google Scholar

[117] Beacom J. F., Bell N. F.. Phys. Rev. D, 2002, 65: 113009 CrossRef ADS arXiv Google Scholar

[118] Beacom J. F., Bell N. F., Hooper D., Pakvasa S., Weiler T. J.. Phys. Rev. Lett., 2003, 90: 181301 CrossRef PubMed ADS arXiv Google Scholar

[119] Beacom J., Bell N., Hooper D., Pakvasa S., Weiler T.. Phys. Rev. D, 2005, 72: 019901 CrossRef ADS arXiv Google Scholar

[120] Beacom J. F., Bell N. F., Hooper D., Pakvasa S., Weiler T. J.. Phys. Rev. D, 2004, 69: 017303 CrossRef ADS Google Scholar

[121] Meloni D., Ohlsson T.. Phys. Rev. D, 2007, 75: 125017 CrossRef ADS arXiv Google Scholar

[122] Maltoni M., Winter W.. J. High Energy Phys., 2008, 2008(07): 064-064 CrossRef ADS arXiv Google Scholar

[123] Pagliaroli G., Palladino A., Villante F. L., Vissani F.. Phys. Rev. D, 2015, 92: 113008 CrossRef ADS arXiv Google Scholar

[124] Y. Huang, and B.-Q. Ma, Universe 3, 15 (2015),. arXiv Google Scholar

[125] Hooper D., Morgan D., Winstanley E.. Phys. Rev. D, 2005, 72: 065009 CrossRef ADS arXiv Google Scholar

[126] Ellis J., Mavromatos N. E.. Astropart. Phys., 2013, 43: 50-55 CrossRef ADS arXiv Google Scholar

[127] De Sabbata V., Gasperini M.. Nuov Cim A, 1981, 65: 479-500 CrossRef ADS Google Scholar

[128] Ahn Y. H., Kang S. K., Kim C. S.. J. High Energ. Phys., 2016, 2016(10): 92 CrossRef ADS arXiv Google Scholar

[129] Bustamante M., Gago A. M., Pérez J. J.. J. High Energ. Phys., 2011, 2011(5): 133 CrossRef ADS arXiv Google Scholar

[130] de Salas P. F., Lineros R. A., Tórtola M.. Phys. Rev. D, 2016, 94: 123001 CrossRef ADS arXiv Google Scholar

[131] Klop N., Ando S.. Phys. Rev. D, 2018, 97: 063006 CrossRef ADS arXiv Google Scholar

[132] Supanitsky A. D., Medina-Tanco G.. Phys. Rev. D, 2012, 86: 093020 CrossRef ADS arXiv Google Scholar

[133] Wang S. H., Chen P., Nam J., Huang M.. J. Cosmol. Astropart. Phys., 2013, 2013(11): 062-062 CrossRef ADS arXiv Google Scholar

[134] Aab A.. (The Pierre Auger Collaboration). J. Cosmol. Astropart. Phys., 2017, 2017(04): 009-009 CrossRef ADS arXiv Google Scholar

[135] M. Niechciol, et al. (The Pierre Auger Collaboration), in Diffuse and Targeted Searches for Ultra-High-Energyphotons Using the Hybrid Detector of the PierreAuger Observatory: Proceeding of the 35th International Cosmic Ray Conference (ICRC 2017) (PoS, Busan, 2017), pp. 56-63. Google Scholar

[136] Aab A.. (The Pierre Auger Collaboration). Astrophys. J., 2017, 837: L25 CrossRef ADS arXiv Google Scholar

[137] G. Rubtsov, et al. (Telescope Array), in Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017) (PoS, Busan, 2017), p. 1102. Google Scholar

[138] A. Aab, et al. (The Pierre Auger Collaboration),. arXiv Google Scholar

[139] Protheroe R. J., Biermann P. L.. Astropart. Phys., 1996, 6: 45-54 CrossRef ADS arXiv Google Scholar

[140] Fixsen D. J., Dwek E., Mather J. C., Bennett C. L., Shafer R. A.. Astrophys. J., 1998, 508: 123-128 CrossRef ADS arXiv Google Scholar

[141] Biteau J., Williams D. A.. Astrophys. J., 2015, 812: 60 CrossRef ADS arXiv Google Scholar

[142] De Angelis A., Roncadelli M., Mansutti O.. Phys. Rev. D, 2007, 76: 121301 CrossRef ADS arXiv Google Scholar

[143] Sánchez-Conde M. A., Paneque D., Bloom E., Prada F., Domínguez A.. Phys. Rev. D, 2009, 79: 123511 CrossRef ADS arXiv Google Scholar

[144] Amelino-Camelia G.. New J. Phys., 2004, 6: 188-188 CrossRef ADS arXiv Google Scholar

[145] Stecker F. W.. Astropart. Phys., 2003, 20: 85-90 CrossRef ADS arXiv Google Scholar

[146] Stecker F. W.. Astropart. Phys., 2011, 35: 95-97 CrossRef ADS arXiv Google Scholar

[147] Vasileiou V., Jacholkowska A., Piron F., Bolmont J., Couturier C., Granot J., Stecker F. W., Cohen-Tanugi J., Longo F.. Phys. Rev. D, 2013, 87: 122001 CrossRef ADS arXiv Google Scholar

[148] Ellis J., Konoplich R., Mavromatos N. E., Nguyen L., Sakharov A. S., Sarkisyan-Grinbaum E. K.. Phys. Rev. D, 2019, 99: 083009 CrossRef ADS arXiv Google Scholar

[149] B. Sarkar, K.-H. Kampert, and J. Kulbartz, in Proceedings of the 32nd International Cosmic Ray Conference (ICRC 2011) (Beijing, 2011 p. 198. Google Scholar

[150] A. Aab, et al. (The Pierre Auger Collaboration),. arXiv Google Scholar

[151] Ikeda D.. Nucl. Particle Phys. Proc., 2017, 291-293: 74-81 CrossRef Google Scholar

[152] Aab A.. (The Pierre Auger Collaboration). J. Cosmol. Astropart. Phys., 2017, 2017(06): 026-026 CrossRef ADS arXiv Google Scholar

[153] F. Fenu, in The Cosmic Ray Energy Spectrum Measured Usingthe Pierre Auger Observatory: Proceeding of the 35th International Cosmic Ray Conference (ICRC 2017) (PoS, Busan, 2017), p. 486. Google Scholar

[154] Y. Tsunesada (Telescope Array), in Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017) (PoS, Busan, 2017). Google Scholar

[155] Oikonomou F., Kotera K., Abdalla F. B.. J. Cosmol. Astropart. Phys., 2015, 2015(01): 030-030 CrossRef ADS arXiv Google Scholar

[156] Denton P. B., Weiler T. J.. J. High Energy Astrophys., 2015, 8: 1-9 CrossRef ADS arXiv Google Scholar

[157] T. Abu-Zayyad, et al. (Pierre Auger Collaboration, Telescope Array Collaboration), in Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013) (Rio de Janeiro, Brazil, 2013),. arXiv Google Scholar

[158] Abbasi R. U.. (The Telescope Array Collaboration). Astrophys. J., 2014, 790: L21 CrossRef ADS arXiv Google Scholar

[159] R. U. Abbasi, et al. (The Telescope Array Collaboration),. arXiv Google Scholar

[160] Aab A.. (The Telescope Array Collaboration). Science, 2017, 357: 1266-1270 CrossRef PubMed ADS arXiv Google Scholar

[161] D. Charrier, K. D. de Vries, Q. Gou, J. Gu, H. Hu, Y. Huang, S. Le Coz, O. Martineau-Huynh, V. Niess, T. Saugrin, M. Tueros, X. Wu, J. Zhang, Y. Zhang,. arXiv Google Scholar

[162] Abreu P.. (The Telescope Array Collaboration). Phys. Rev. Lett., 2012, 109: 062002 CrossRef PubMed ADS arXiv Google Scholar

[163] Aab A.. (The Pierre Auger Collaboration). Phys. Rev. D, 2015, 91: 032003 CrossRef ADS arXiv Google Scholar

[164] Abbott B. P.. (The LIGO Scientific Collaboration, The Virgo Collaboration). Phys. Rev. Lett., 2017, 119: 161101 CrossRef ADS arXiv Google Scholar

[165] Aartsen M. G.. (The IceCube Collaboration). Science, 2018, 825: eaat2890-151 CrossRef PubMed ADS arXiv Google Scholar

[166] Aartsen M. G.. (The IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool telescope, Subaru, Swift/NuSTAR, VERITAS, VLA/17B-403 teams). Science, 2018, : eaat1378 CrossRef PubMed ADS arXiv Google Scholar

[167] M. Zucker, S. Vitale, and D. Sigg, in Getting an A+: Enhancing Advanced LIGO: Talk given at the Dawn-II Workshop (Georgia Tech, 2016). Google Scholar

[168] Sathyaprakash B., Abernathy M., Acernese F., Ajith P., Allen B., Amaro-Seoane P., Andersson N., Aoudia S., Arun K., Astone P., Krishnan B., Barack L., Barone F., Barr B., Barsuglia M., Bassan M., Bassiri R., Beker M., Beveridge N., Bizouard M., Bond C., Bose S., Bosi L., Braccini S., Bradaschia C., Britzger M., Brueckner F., Bulik T., Bulten H. J., Burmeister O., Calloni E., Campsie P., Carbone L., Cella G., Chalkley E., Chassande-Mottin E., Chelkowski S., Chincarini A., Cintio A. D., Clark J., Coccia E., Colacino C. N., Colas J., Colla A., Corsi A., Cumming A., Cunningham L., Cuoco E., Danilishin S., Danzmann K., Daw E., De Salvo R., Pozzo W. D., Dent T., De Rosa R., Fiore L. D., Emilio M. D. P., Virgilio A. D., Dietz A., Doets M., Dueck J., Edwards M., Fafone V., Fairhurst S., Falferi P., Favata M., Ferrari V., Ferrini F., Fidecaro F., Flaminio R., Franc J., Frasconi F., Freise A., Friedrich D., Fulda P., Gair J., Galimberti M., Gemme G., Genin E., Gennai A., Giazotto A., Glampedakis K., Gossan S., Gouaty R., Graef C., Graham W., Granata M., Grote H., Guidi G., Hallam J., Hammond G., Hannam M., Harms J., Haughian K., Hawke I., Heinert D., Hendry M., Heng I., Hennes E., Hild S., Hough J., Huet D., Husa S., Huttner S., Iyer B., Jones D. I., Jones G., Kamaretsos I., Mishra C. K., Kawazoe F., Khalili F., Kley B., Kokeyama K., Kokkotas K., Kroker S., Kumar R., Kuroda K., Lagrange B., Lastzka N., Li T. G. F., Lorenzini M., Losurdo G., Lück H., Majorana E., Malvezzi V., Mandel I., Mandic V., Marka S., Marin F., Marion F., Marque J., Martin I., Leod D. M., Mckechan D., Mehmet M., Michel C., Minenkov Y., Morgado N., Morgia A., Mosca S., Moscatelli L., Mours B., Müller-Ebhardt H., Murray P., Naticchioni L., Nawrodt R., Nelson J., Shaughnessy R. O., Ott C. D., Palomba C., Paoli A., Parguez G., Pasqualetti A., Passaquieti R., Passuello D., Perciballi M., Piergiovanni F., Pinard L., Pitkin M., Plastino W., Plissi M., Poggiani R., Popolizio P., Porter E., Prato M., Prodi G., Punturo M., Puppo P., Rabeling D., Racz I., Rapagnani P., Re V., Read J., Regimbau T., Rehbein H., Reid S., Ricci F., Richard F., Robinson C., Rocchi A., Romano R., Rowan S., Rüdiger A., Samblowski A., Santamaría L., Sassolas B., Schilling R., Schmidt P., Schnabel R., Schutz B., Schwarz C., Scott J., Seidel P., Sintes A. M., Somiya K., Sopuerta C. F., Sorazu B., Speirits F., Storchi L., Strain K., Strigin S., Sutton P., Tarabrin S., Taylor B., Thürin A., Tokmakov K., Tonelli M., Tournefier H., Vaccarone R., Vahlbruch H., van den Brand J. F. J., Van Den Broeck C., van der Putten S., van Veggel M., Vecchio A., Veitch J., Vetrano F., Vicere A., Vyatchanin S., We?els P., Willke B., Winkler W., Woan G., Woodcraft A., Yamamoto K.. Class. Quantum Grav., 2012, 29: 124013 CrossRef ADS arXiv Google Scholar

[169] M. Evans, in Cosmic Explorer R&D: Talk given at the Gravitational Wave Advanced Detector Workshop 2018 (Girdwood, Alaska, 2018). Google Scholar

[170] Meegan C., Lichti G., Bhat P. N., Bissaldi E., Briggs M. S., Connaughton V., Diehl R., Fishman G., Greiner J., Hoover A. S., van der Horst A. J., von Kienlin A., Kippen R. M., Kouveliotou C., McBreen S., Paciesas W. S., Preece R., Steinle H., Wallace M. S., Wilson R. B., Wilson-Hodge C.. Astrophys. J., 2009, 702: 791-804 CrossRef ADS arXiv Google Scholar

[171] Atwood W. B.. (Fermi/LAT Collaboration). Astrophys. J., 2009, 697: 1071-1102 CrossRef ADS arXiv Google Scholar

[172] H. Abdalla, et al. (The H.E.S.S. Collaboration),. arXiv Google Scholar

[173] M. L. Ahnen, et al. (The MAGIC Collaboration),. arXiv Google Scholar

[174] A. U. Abeysekara, et al. (The VERITAS Collaboration),. arXiv Google Scholar

[175] A. U. Abeysekara, et al. (The HAWC Collaboration),. arXiv Google Scholar

[176] B. S. Acharya, et al. (Cherenkov Telescope Array Consortium),. arXiv Google Scholar

[177] Di Sciascio G.. Nucl. Particle Phys. Proc., 2016, 279-281: 166-173 CrossRef ADS arXiv Google Scholar

[178] P. A. Abell, et al. (The LSST Science, LSST Project), LSST Science Book, Version 2.0, (2009),. arXiv Google Scholar

[179] S. Sako, R. Osawa, H. Takahashi, Y. Kikuchi, M. Doi, N. Kobayashi, T. Aoki, K. Arimatsu, M. Ichiki, S. Ikeda, Y. Ita, T. Kasuga, H. Kawakita, M. Kokubo, H. Maehara, N. Matsunaga, H. Mito, K. Mitsuda, T. Miyata, K. Mori, Y. Mori, M. Morii, T. Morokuma, K. Motohara, Y. Nakada, K. Osawa, S. Okumura, H. Onozato, Y. Sarugaku, M. Sato, T. Shigeyama, T. Soyano, M. Tanaka, Y. Taniguchi, A. Tanikawa, K. Tarusawa, N. Tominaga, T. Totani, S. Urakawa, F. Usui, J. Watanabe, J. Yamaguchi, M. Yoshikawa, in Development of a Prototype of the Tomo-e Gozen Wide-field CMOS Camera: Proceedings Volume 9908, Ground-based and Airborne Instrumentation for Astronomy VI (SPIE, Edinburgh, 2006). Google Scholar

[180] Murase K.. Phys. Rev. Lett., 2009, 103: 081102 CrossRef PubMed ADS arXiv Google Scholar

[181] Murase K.. Astrophys. J., 2012, 745: L16 CrossRef ADS arXiv Google Scholar

[182] Fang K., Metzger B. D.. Astrophys. J., 2017, 849: 153 CrossRef ADS arXiv Google Scholar

[183] Smith M. W. E., Fox D. B., Cowen D. F., Mészáros P., Te?i? G., Fixelle J., Bartos I., Sommers P., Ashtekar A., Jogesh Babu G., Barthelmy S. D., Coutu S., DeYoung T., Falcone A. D., Gao S., Hashemi B., Homeier A., Márka S., Owen B. J., Taboada I.. Astropart. Phys., 2013, 45: 56-70 CrossRef ADS arXiv Google Scholar

[184] M. G. Aartsen, et al. (IceCube Collaboration),. arXiv Google Scholar

[185] Masui K., Lin H. H., Sievers J., Anderson C. J., Chang T. C., Chen X., Ganguly A., Jarvis M., Kuo C. Y., Li Y. C., Liao Y. W., McLaughlin M., Pen U. L., Peterson J. B., Roman A., Timbie P. T., Voytek T., Yadav J. K.. Nature, 2015, 528: 523-525 CrossRef PubMed ADS arXiv Google Scholar

[186] Lorimer D. R., Bailes M., McLaughlin M. A., Narkevic D. J., Crawford F.. Science, 2007, 318: 777-780 CrossRef PubMed ADS arXiv Google Scholar

[187] Petroff E., Barr E. D., Jameson A., Keane E. F., Bailes M., Kramer M., Morello V., Tabbara D., van Straten W.. Publ. Astron. Soc. Aust., 2016, 33: e045 CrossRef ADS arXiv Google Scholar

[188] Spitler L. G., Scholz P., Hessels J. W. T., Bogdanov S., Brazier A., Camilo F., Chatterjee S., Cordes J. M., Crawford F., Deneva J., Ferdman R. D., Freire P. C. C., Kaspi V. M., Lazarus P., Lynch R., Madsen E. C., McLaughlin M. A., Patel C., Ransom S. M., Seymour A., Stairs I. H., Stappers B. W., van Leeuwen J., Zhu W. W.. Nature, 2016, 531: 202-205 CrossRef PubMed ADS arXiv Google Scholar

[189] Amiri M.. (The CHIME/FRB Collaboration). Nature, 2019, 566: 235-238 CrossRef PubMed ADS arXiv Google Scholar

[190] Mottez F., Zarka P.. Astron. Astrophys., 2014, 569: A86 CrossRef ADS arXiv Google Scholar

[191] E. Platts, A. Weltman, A. Walters, S. P. Tendulkar, J. E. B. Gordin, and S. Kandhai,. arXiv Google Scholar

[192] C. Ng, K. Vanderlinde, A. Paradise, P. Klages, K. Masui, K. Smith, K. Bandura, P. J. Boyle, M. Dobbs, V. Kaspi, A. Renard, J. R. Shaw, I. Stairs, and I. Tretyakov,. arXiv Google Scholar

[193] P. C. Boyle and Chime/FRB Collaboration Astronomer's Telegram 8, 11901 (2018). Google Scholar

[194] P. Zarka and F. Mottez in SF2A-2016: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics (2016), pp. 347-351. Google Scholar

[195] Rowlinson A., Bell M. E., Murphy T., Trott C. M., Hurley-Walker N., Johnston S., Tingay S. J., Kaplan D. L., Carbone D., Hancock P. J., Feng L., Offringa A. R., Bernardi G., Bowman J. D., Briggs F., Cappallo R. J., Deshpande A. A., Gaensler B. M., Greenhill L. J., Hazelton B. J., Johnston-Hollitt M., Lonsdale C. J., McWhirter S. R., Mitchell D. A., Morales M. F., Morgan E., Oberoi D., Ord S. M., Prabu T., Udaya Shankar N., Srivani K. S., Subrahmanyan R., Wayth R. B., Webster R. L., Williams A., Williams C. L.. Mon. Not. R. Astron. Soc., 2016, 458: 3506-3522 CrossRef ADS arXiv Google Scholar

[196] Rane A., Lorimer D. R., Bates S. D., McMann N., McLaughlin M. A., Rajwade K.. Mon. Not. R. Astron. Soc., 2016, 455: 2207-2215 CrossRef ADS arXiv Google Scholar

[197] V. Soglasnov,. arXiv Google Scholar

[198] Eftekhari T., Stovall K., Dowell J., Schinzel F. K., Taylor G. B.. Astrophys. J., 2016, 829: 62 CrossRef ADS arXiv Google Scholar

[199] V. Kondratiev, V. A. Soglasnov, M. V. Popov, N. Bartel, W. Cannon, A. Y. Novikov, and V. I. Altunin, J. Roy. Ast. Soc. Canada 99, 139 (2005). Google Scholar

[200] Beskin V. S., Chernov S. V., Gwinn C. R., Tchekhovskoy A. A.. Space Sci. Rev., 2015, 191: 207-237 CrossRef ADS arXiv Google Scholar

[201] Petrova S. A.. Astron. Astrophys., 2004, 424: 227-236 CrossRef ADS Google Scholar

[202] Sturrock P. A.. Astrophys. J., 1971, 164: 529 CrossRef ADS Google Scholar

[203] Voisin G., Mottez F., Bonazzola S.. Mon. Not. R. Astron. Soc., 2018, 474: 1436-1452 CrossRef ADS arXiv Google Scholar

[204] Pen U. L., Connor L.. Astrophys. J., 2015, 807: 179 CrossRef ADS arXiv Google Scholar

[205] Meyers B. W., Tremblay S. E., Bhat N. D. R., Shannon R. M., Kirsten F., Sokolowski M., Tingay S. J., Oronsaye S. I., Ord S. M.. Astrophys. J., 2017, 851: 20 CrossRef ADS arXiv Google Scholar

[206] Pritchard J. R., Loeb A.. Rep. Prog. Phys., 2012, 75: 086901 CrossRef PubMed ADS arXiv Google Scholar

[207] S. Zaroubi in The First Galaxies. Astrophysics and Space Science Library, vol 396, edited by T. Wiklind, B. Mobasher, and V. Bromm, (Springer, Berlin, Heidelberg, 2013). Google Scholar

[208] A. Ferrara, and S. Pandolfi, in Proceedings of the International School of Physics “Enrico Fermi": New Horizons for Observational Cosmology, Rome, Italy, June 30-July 6, 2013, Vol. 186 (Rome, 2014), pp. 1-57. Google Scholar

[209] L. V. E. Koopmans, J. Pritchard, G. Mellema, F. Abdalla, J. Aguirre, K. Ahn, R. Barkana, I. van Bemmel, G. Bernardi, A. Bonaldi, F. Briggs, A. G. de Bruyn, T. C. Chang, E. Chapman, X. Chen, B. Ciardi, K. K. Datta, P. Dayal, A. Ferrara, A. Fialkov, F. Fiore, K. Ichiki, I. T. Illiev, S. Inoue, V. Jelić, M. Jones, J. Lazio, U. Maio, S. Majumdar, K. J. Mack, A. Mesinger, M. F. Morales, A. Parsons, U.-L. Pen, M. Santos, R. Schneider, B. Semelin, R. S. de Souza, R. Subrahmanyan, T. Takeuchi, C. Trott, H. Vedantham, J. Wagg, R. Webster, and S. Wyithe, The Cosmic Dawn and Epoch of Reionization withthe Square Kilometre Array: Advancing Astrophysics with the Square Kilometre Array (PoS, Giardini Naxos, 2014). Google Scholar

[210] Jacobs D. C., Aguirre J. E., Parsons A. R., Pober J. C., Bradley R. F., Carilli C. L., Gugliucci N. E., Manley J. R., van der Merwe C., Moore D. F., Parashare C. R.. Astrophys. J., 2011, 734: L34 CrossRef ADS arXiv Google Scholar

[211] Taylor G. B., Ellingson S. W., Kassim N. E., Craig J., Dowell J., Wolfe C. N., Hartman J., Bernardi G., Clarke T., Cohen A., Dalal N. P., Erickson W. C., Hicks B., Greenhill L. J., Jacoby B., Lane W., Lazio J., Mitchell D., Navarro R., Ord S. M., Pihlstr?m Y., Polisensky E., Ray P. S., Rickard L. J., Schinzel F. K., Schmitt H., Sigman E., Soriano M., Stewart K. P., Stovall K., Tremblay S., Wang D., Weiler K. W., White S., Wood D. L.. J. Astron. Instrum., 2012, 01: 1250004 CrossRef ADS arXiv Google Scholar

[212] Paciga G., Albert J. G., Bandura K., Chang T. C., Gupta Y., Hirata C., Odegova J., Pen U. L., Peterson J. B., Roy J., Shaw J. R., Sigurdson K., Voytek T.. Mon. Not. R. Astron. Soc., 2013, 433: 639-647 CrossRef ADS arXiv Google Scholar

[213] van Haarlem M. P., Wise M. W., Gunst A. W., Heald G., McKean J. P., Hessels J. W. T., de Bruyn A. G., Nijboer R., Swinbank J., Fallows R., Brentjens M., Nelles A., Beck R., Falcke H., Fender R., H?randel J., Koopmans L. V. E., Mann G., Miley G., R?ttgering H., Stappers B. W., Wijers R. A. M. J., Zaroubi S., van den Akker M., Alexov A., Anderson J., Anderson K., van Ardenne A., Arts M., Asgekar A., Avruch I. M., Batejat F., B?hren L., Bell M. E., Bell M. R., van Bemmel I., Bennema P., Bentum M. J., Bernardi G., Best P., B?rzan L., Bonafede A., Boonstra A. J., Braun R., Bregman J., Breitling F., van de Brink R. H., Broderick J., Broekema P. C., Brouw W. N., Brüggen M., Butcher H. R., van Cappellen W., Ciardi B., Coenen T., Conway J., Coolen A., Corstanje A., Damstra S., Davies O., Deller A. T., Dettmar R. J., van Diepen G., Dijkstra K., Donker P., Doorduin A., Dromer J., Drost M., van Duin A., Eisl?ffel J., van Enst J., Ferrari C., Frieswijk W., Gankema H., Garrett M. A., de Gasperin F., Gerbers M., de Geus E., Grie?meier J. M., Grit T., Gruppen P., Hamaker J. P., Hassall T., Hoeft M., Holties H. A., Horneffer A., van der Horst A., van Houwelingen A., Huijgen A., Iacobelli M., Intema H., Jackson N., Jelic V., de Jong A., Juette E., Kant D., Karastergiou A., Koers A., Kollen H., Kondratiev V. I., Kooistra E., Koopman Y., Koster A., Kuniyoshi M., Kramer M., Kuper G., Lambropoulos P., Law C., van Leeuwen J., Lemaitre J., Loose M., Maat P., Macario G., Markoff S., Masters J., McFadden R. A., McKay-Bukowski D., Meijering H., Meulman H., Mevius M., Middelberg E., Millenaar R., Miller-Jones J. C. A., Mohan R. N., Mol J. D., Morawietz J., Morganti R., Mulcahy D. D., Mulder E., Munk H., Nieuwenhuis L., van Nieuwpoort R., Noordam J. E., Norden M., Noutsos A., Offringa A. R., Olofsson H., Omar A., Orrú E., Overeem R., Paas H., Pandey-Pommier M., Pandey V. N., Pizzo R., Polatidis A., Rafferty D., Rawlings S., Reich W., de Reijer J. P., Reitsma J., Renting G. A., Riemers P., Rol E., Romein J. W., Roosjen J., Ruiter M., Scaife A., van der Schaaf K., Scheers B., Schellart P., Schoenmakers A., Schoonderbeek G., Serylak M., Shulevski A., Sluman J., Smirnov O., Sobey C., Spreeuw H., Steinmetz M., Sterks C. G. M., Stiepel H. J., Stuurwold K., Tagger M., Tang Y., Tasse C., Thomas I., Thoudam S., Toribio M. C., van der Tol B., Usov O., van Veelen M., van der Veen A. J., ter Veen S., Verbiest J. P. W., Vermeulen R., Vermaas N., Vocks C., Vogt C., de Vos M., van der Wal E., van Weeren R., Weggemans H., Weltevrede P., White S., Wijnholds S. J., Wilhelmsson T., Wucknitz O., Yatawatta S., Zarka P., Zensus A., van Zwieten J.. Astron. Astrophys., 2013, 556: A2 CrossRef ADS arXiv Google Scholar

[214] Bowman J. D., Cairns I., Kaplan D. L., Murphy T., Oberoi D., Staveley-Smith L., Arcus W., Barnes D. G., Bernardi G., Briggs F. H., Brown S., Bunton J. D., Burgasser A. J., Cappallo R. J., Chatterjee S., Corey B. E., Coster A., Deshpande A., deSouza L., Emrich D., Erickson P., Goeke R. F., Gaensler B. M., Greenhill L. J., Harvey-Smith L., Hazelton B. J., Herne D., Hewitt J. N., Johnston-Hollitt M., Kasper J. C., Kincaid B. B., Koenig R., Kratzenberg E., Lonsdale C. J., Lynch M. J., Matthews L. D., McWhirter S. R., Mitchell D. A., Morales M. F., Morgan E. H., Ord S. M., Pathikulangara J., Prabu T., Remillard R. A., Robishaw T., Rogers A. E. E., Roshi A. A., Salah J. E., Sault R. J., Shankar N. U., Srivani K. S., Stevens J. B., Subrahmanyan R., Tingay S. J., Wayth R. B., Waterson M., Webster R. L., Whitney A. R., Williams A. J., Williams C. L., Wyithe J. S. B.. Publ. Astron. Soc. Aust., 2013, 30: e031 CrossRef ADS arXiv Google Scholar

[215] Zheng H., Tegmark M., Buza V., Dillon J. S., Gharibyan H., Hickish J., Kunz E., Liu A., Losh J., Lutomirski A., Morrison S., Narayanan S., Perko A., Rosner D., Sanchez N., Schutz K., Tribiano S. M., Valdez M., Yang H., Adami K. Z., Zelko I., Zheng K., Armstrong R. P., Bradley R. F., Dexter M. R., Ewall-Wice A., Magro A., Matejek M., Morgan E., Neben A. R., Pan Q., Penna R. F., Peterson C. M., Su M., Villasenor J., Williams C. L., Zhu Y.. Mon. Not. R. Astron. Soc., 2014, 445: 1084-1103 CrossRef ADS arXiv Google Scholar

[216] DeBoer D. R., Parsons A. R., Aguirre J. E., Alexander P., Ali Z. S., Beardsley A. P., Bernardi G., Bowman J. D., Bradley R. F., Carilli C. L., Cheng C., Acedo E. L., Dillon J. S., Ewall-Wice A., Fadana G., Fagnoni N., Fritz R., Furlanetto S. R., Glendenning B., Greig B., Grobbelaar J., Hazelton B. J., Hewitt J. N., Hickish J., Jacobs D. C., Julius A., Kariseb M. C., Kohn S. A., Lekalake T., Liu A., Loots A., MacMahon D., Malan L., Malgas C., Maree M., Martinot Z., Mathison N., Matsetela E., Mesinger A., Morales M. F., Neben A. R., Patra N., Pieterse S., Pober J. C., Razavi-Ghods N., Ringuette J., Robnett J., Rosie K., Sell R., Smith C., Syce A., Tegmark M., Thyagarajan N., Williams P. K. G., Zheng H.. PASP, 2017, 129: 045001 CrossRef ADS arXiv Google Scholar

[217] Zheng Q., Wu X. P., Johnston-Hollitt M., Gu J., Xu H.. Astrophys. J., 2016, 832: 190 CrossRef ADS arXiv Google Scholar

[218] Bowman J. D., Rogers A. E. E., Monsalve R. A., Mozdzen T. J., Mahesh N.. Nature, 2018, 555: 67-70 CrossRef PubMed ADS arXiv Google Scholar

[219] Fraser S., Hektor A., Hütsi G., Kannike K., Marzo C., Marzola L., Racioppi A., Raidal M., Spethmann C., Vaskonen V., Veerm?e H.. Phys. Lett. B, 2018, 785: 159-164 CrossRef ADS arXiv Google Scholar

[220] Cheung K., Kuo J. L., Ng K. W., Tsai Y. L. S.. Phys. Lett. B, 2019, 789: 137-144 CrossRef ADS arXiv Google Scholar

[221] Wang Y., Zhao G. B.. Astrophys. J., 2018, 869: 26 CrossRef ADS arXiv Google Scholar

[222] Chapman E., Abdalla F. B., Harker G., Jeli? V., Labropoulos P., Zaroubi S., Brentjens M. A., de Bruyn A. G., Koopmans L. V. E.. Mon. Not. R. Astron. Soc., 2012, 423: 2518-2532 CrossRef ADS arXiv Google Scholar

[223] A. E. E. Rogers, and J. D. Bowman, Radio Sci. 47, RS0K06 (2012), arXiv: 1209.1106. Google Scholar

[224] Monsalve R. A., Rogers A. E. E., Bowman J. D., Mozdzen T. J.. Astrophys. J., 2017, 835: 49 CrossRef ADS arXiv Google Scholar

[225] A. Connolly, and A. G. Vieregg, in Neutrino Astronomy---Current Status, Future Prospects, edited by T. Gaisser, and A. Karle, (World Scientific, Singapore, 2017), pp. 217-240. Google Scholar

[226] Schr?der F. G.. Prog. Particle Nucl. Phys., 2017, 93: 1-68 CrossRef ADS arXiv Google Scholar

[227] T. Huege, and D. Besson,. arXiv Google Scholar

[228] T. K. Gaisser, R. Engel, and E. Resconi, Cosmic Rays and Particle Physics 2nd ed. (Cambridge University Press, Cambridge, 2016). Google Scholar

[229] Kahn F. D., Lerche I.. Proc. R. Soc. Lond. A, 1966, 289: 206-213 CrossRef ADS Google Scholar

[230] G. A. Askaryan Sov. Phys. JETP 14, 441 (1962). Google Scholar

[231] G. A. Askaryan Sov. Phys. JETP 48, 988 (1965). Google Scholar

[232] Alvarez-Mu?iz J., Carvalho Jr. W. R., García-Fernández D., Schoorlemmer H., Zas E.. Astroparticle Phys., 2015, 66: 31-38 CrossRef ADS arXiv Google Scholar

[233] Nelles A., Schellart P., Buitink S., Corstanje A., de Vries K. D., Enriquez J. E., Falcke H., Frieswijk W., H?randel J. R., Scholten O., ter Veen S., Thoudam S., van den Akker M., Anderson J., Asgekar A., Bell M. E., Bentum M. J., Bernardi G., Best P., Bregman J., Breitling F., Broderick J., Brouw W. N., Brüggen M., Butcher H. R., Ciardi B., Deller A., Duscha S., Eisl?ffel J., Fallows R. A., Garrett M. A., Gunst A. W., Hassall T. E., Heald G., Horneffer A., Iacobelli M., Juette E., Karastergiou A., Kondratiev V. I., Kramer M., Kuniyoshi M., Kuper G., Maat P., Mann G., Mevius M., Norden M. J., Paas H., Pandey-Pommier M., Pietka G., Pizzo R., Polatidis A. G., Reich W., R?ttgering H., Scaife A. M. M., Schwarz D., Smirnov O., Stappers B. W., Steinmetz M., Stewart A., Tagger M., Tang Y., Tasse C., Vermeulen R., Vocks C., van Weeren R. J., Wijnholds S. J., Wucknitz O., Yatawatta S., Zarka P.. Astroparticle Phys., 2015, 65: 11-21 CrossRef ADS arXiv Google Scholar

[234] Knurenko S. P., Sabourov A.. Astrophys. Space Sci. Trans., 2011, 7: 251-255 CrossRef ADS arXiv Google Scholar

[235] Knurenko S. P., Sabourov A.. Nucl. Phys. B - Proc. Supplements, 2011, 212-213: 241-251 CrossRef ADS Google Scholar

[236] Prosin V. V., Budnev N. M., Chiavassa A., Dyachok A. N., Epimakhov S. N., Fenu F., Fomin Y. A., Gress O. A., Gress T. I., Kalmykov N. N., Karpov N. I., Korosteleva E. E., Kozhin V. A., Kuzmichev L. A., Lubsandorzhiev B. K., Lubsandorzhiev N. B., Mirgazov R. R., Monhoev R. D., Osipova E. A., Panasyuk M. I., Pankov L. V., Popova E. G., Ptuskin V. S., A Semeney Y., Silaev A. A., Silaev Jr. A. A., Skurikhin A. V., Spiering C., Sulakov V. P., Sveshnikova L. G., Zagorodnikov A. V.. J. Phys.-Conf. Ser., 2016, 718: 052031 CrossRef ADS Google Scholar

[237] Abu?\Zayyad T., Belov K., Bird D. J., Boyer J., Cao Z., Catanese M., Chen G. F., Clay R. W., Covault C. E., Dai H. Y., Dawson B. R., Elbert J. W., Fick B. E., Fortson L. F., Fowler J. W., Gibbs K. G., Glasmacher M. A. K., Green K. D., Ho Y., Huang A., Jui C. C., Kidd M. J., Kieda D. B., Knapp B. C., Ko S., Larsen C. G., Lee W., Loh E. C., Mannel E. J., Matthews J., Matthews J. N., Newport B. J., Nitz D. F., Ong R. A., Simpson K. M., Smith J. D., Sinclair D., Sokolsky P., Sommers P., Song C., Tang J. K. K., Thomas S. B., van der Velde J. C., Wiencke L. R., Wilkinson C. R., Yoshida S., Zhang X. Z.. Astrophys. J., 2001, 557: 686-699 CrossRef ADS Google Scholar

[238] Abbasi R. U., Abu-Zayyad T., Al-Seady M., Allen M., Amman J. F., Anderson R. J., Archbold G., Belov K., Belz J. W., Bergman D. R., Blake S. A., Brusova O. A., Burt G. W., Cannon C., Cao Z., Deng W., Fedorova Y., Finley C. B., Gray R. C., Hanlon W. F., Hoffman C. M., Holzscheiter M. H., Hughes G., Hüntemeyer P., Ivanov D., Jones B. F., Jui C. C. H., Kim K., Kirn M. A., Loh E. C., Liu J., Lundquist J. P., Maestas M. M., Manago N., Marek L. J., Martens K., Matthews J. A. J., Matthews J. N., Moore S. A., O'Neill A., Painter C. A., Perera L., Reil K., Riehle R., Roberts M., Rodriguez D., Sasaki N., Schnetzer S. R., Scott L. M., Sinnis G., Smith J. D., Sokolsky P., Song C., Springer R. W., Stokes B. T., Stratton S., Thomas S. B., Thomas J. R., Thomson G. B., Tupa D., Zech A., Zhang X.. Phys. Rev. Lett., 2010, 104: 161101 CrossRef PubMed ADS arXiv Google Scholar

[239] J. Belz, in Proceedings of the 34th International Cosmic Ray Conference (ICRC 2015) (PoS, The Hague, 2015), p. 351. Google Scholar

[240] J. Bellido, in The Pierre Auger Observatory: Contributions to the 35th International Cosmic Ray Conference (ICRC 2017) (PoS, Busan, 2017), pp. 40-47. Google Scholar

[241] P. Sanchez-Lucas, in The Pierre Auger Observatory: Contributions to the 35th International Cosmic Ray Conference (ICRC 2017) (PoS, Busan, 2017), pp. 48-55. Google Scholar

[242] Buitink S., Corstanje A., Falcke H., H?randel J. R., Huege T., Nelles A., Rachen J. P., Rossetto L., Schellart P., Scholten O., ter Veen S., Thoudam S., Trinh T. N. G., Anderson J., Asgekar A., Avruch I. M., Bell M. E., Bentum M. J., Bernardi G., Best P., Bonafede A., Breitling F., Broderick J. W., Brouw W. N., Brüggen M., Butcher H. R., Carbone D., Ciardi B., Conway J. E., de Gasperin F., de Geus E., Deller A., Dettmar R. J., van Diepen G., Duscha S., Eisl?ffel J., Engels D., Enriquez J. E., Fallows R. A., Fender R., Ferrari C., Frieswijk W., Garrett M. A., Grie?meier J. M., Gunst A. W., van Haarlem M. P., Hassall T. E., Heald G., Hessels J. W. T., Hoeft M., Horneffer A., Iacobelli M., Intema H., Juette E., Karastergiou A., Kondratiev V. I., Kramer M., Kuniyoshi M., Kuper G., van Leeuwen J., Loose G. M., Maat P., Mann G., Markoff S., McFadden R., McKay-Bukowski D., McKean J. P., Mevius M., Mulcahy D. D., Munk H., Norden M. J., Orru E., Paas H., Pandey-Pommier M., Pandey V. N., Pietka M., Pizzo R., Polatidis A. G., Reich W., R?ttgering H. J. A., Scaife A. M. M., Schwarz D. J., Serylak M., Sluman J., Smirnov O., Stappers B. W., Steinmetz M., Stewart A., Swinbank J., Tagger M., Tang Y., Tasse C., Toribio M. C., Vermeulen R., Vocks C., Vogt C., van Weeren R. J., Wijers R. A. M. J., Wijnholds S. J., Wise M. W., Wucknitz O., Yatawatta S., Zarka P., Zensus J. A.. Nature, 2016, 531: 70-73 CrossRef PubMed ADS arXiv Google Scholar

[243] Homola P., Risse M., Góra D., Heck D., Klages H., P?kala J., Wilczy??ska B., Wilczy??ski H.. Nucl. Phys. B - Proc. Supplements, 2006, 151: 119-120 CrossRef ADS Google Scholar

[244] Alvarez-Mu?iz J., Carvalho Jr. W. R., Zas E.. Astroparticle Phys., 2012, 35: 325-341 CrossRef ADS arXiv Google Scholar

[245] Palomares-Ruiz S., Irimia A., Weiler T. J.. Phys. Rev. D, 2006, 73: 083003 CrossRef ADS Google Scholar

[246] Alvarez-Mu?iz J., Carvalho W. R., Romero-Wolf A., Tueros M., Zas E.. Phys. Rev. D, 2012, 86: 123007 CrossRef ADS arXiv Google Scholar

[247] de Vries K. D., Scholten O., Werner K.. Astroparticle Phys., 2013, 45: 23-27 CrossRef ADS arXiv Google Scholar

[248] Aab A.. (The Pierre Auger Collaboration). J. Cosmol. Astropart. Phys., 2018, 2018(10): 026-026 CrossRef ADS arXiv Google Scholar

[249] Gandhi R., Quigg C., Reno M. H., Sarcevic I.. Phys. Rev. D, 1998, 58: 093009 CrossRef ADS Google Scholar

[250] T. Huege, M. Ludwig, and C. W. James, AIP Conf. Proc. 1535, 128 (2013). Google Scholar

[251] Huege T.. Phys. Rep., 2016, 620: 1-52 CrossRef ADS arXiv Google Scholar

[252] de Vries K. D., Buitink S., van Eijndhoven N., Meures T., ó Murchadha A., Scholten O.. Astroparticle Phys., 2016, 74: 96-104 CrossRef ADS arXiv Google Scholar

[253] Motloch P., Alvarez-Mu?iz J., Privitera P., Zas E.. Phys. Rev. D, 2016, 94: 049905 CrossRef ADS Google Scholar

[254] L. D. Landau, and I. Pomeranchuk, Dokl. Akad. Nauk Ser. Fiz. 92, 535 (1953). Google Scholar

[255] L. D. Landau, and I. Pomeranchuk, Dokl. Akad. Nauk Ser. Fiz. 92, 735 (1953). Google Scholar

[256] Migdal A. B.. Phys. Rev., 1956, 103: 1811-1820 CrossRef ADS Google Scholar

[257] Tartare M., Lebrun D., Montanet F.. Phys. Rev. D, 2012, 86: 033005 CrossRef ADS arXiv Google Scholar

[258] Alvarez-Mu?iz J., Zas E.. Phys. Lett. B, 1997, 411: 218-224 CrossRef ADS Google Scholar

[259] Groom D. E., Mokhov N. V., Striganov S. I.. Atomic Data Nucl. Data Tables, 2001, 78: 183-356 CrossRef ADS Google Scholar

[260] Vincent A. C., Argüelles C. A., Kheirandish A.. J. Cosmol. Astropart. Phys., 2017, 2017(11): 012-012 CrossRef ADS arXiv Google Scholar

[261] D. Fargion, A. Aiello, and R. Conversano, in Proceedings of the 26th International Cosmic Ray Conference, August 17-25, 1999 (Salt Lake City, 1999), p. 396,. arXiv Google Scholar

[262] Alvarez-Mu?iz J., Carvalho W. R., Payet K., Romero-Wolf A., Schoorlemmer H., Zas E.. Phys. Rev. D, 2018, 97: 023021 CrossRef ADS arXiv Google Scholar

[263] Glashow S. L.. Phys. Rev., 1960, 118: 316-317 CrossRef ADS Google Scholar

[264] A. Loewy, S. Nussinov, and S. L. Glashow,. arXiv Google Scholar

[265] Balagopal V. A., Haungs A., Huege T., Schr?der F. G.. Eur. Phys. J. C, 2018, 78: 111 CrossRef ADS arXiv Google Scholar

[266] Charrier D.. Nucl. Instruments Methods Phys. Res. Sect. A-Accelerators Spectrometers Detectors Associated Equipment, 2012, 662: S142-S145 CrossRef ADS Google Scholar

[267] Abreu P.. (The Pierre Auger Collaboration). J. Inst., 2012, 7: P10011-P10011 CrossRef ADS arXiv Google Scholar

[268] G. J. Burke, Numerical Electromagnetic Codes -- User's Manual (1992). Google Scholar

[269] Montanet F., Lebrun D., Chauvin J., Lagorio E., Stassi P.. Astrophys. Space Sci. Trans., 2011, 7: 369-372 CrossRef ADS Google Scholar

[270] International Telecomunication Union Recommendation ITU-R P. 372-12 (2015/07) (2015), http://www.itu.int/rec/R-REC-P.372-12-201507-S/en. Google Scholar

[271] J. Lamblin, in Proceedings of the 30th International Cosmic Ray Conference (ICRC 2007) (PoS, Yucatan, 2007), pp. 921-924. Google Scholar

[272] S. Le Coz (TREND), in Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017) (PoS, Busan, 2017). Google Scholar

[273] Mottram, Matthew Joseph, A Search for Ultra-high Energy Neutrinos and Cosmic-Rays with ANITA-2 (2012). Google Scholar

[274] Barwick S. W., Besson D. Z., Burgman A., Chiem E., Hallgren A., Hanson J. C., Klein S. R., Kleinfelder S. A., Nelles A., Persichilli C., Phillips S., Prakash T., Reed C., Shively S. R., Tatar J., Unger E., Walker J., Yodh G.. Astroparticle Phys., 2017, 90: 50-68 CrossRef ADS arXiv Google Scholar

[275] Schellart P., Buitink S., Corstanje A., Enriquez J. E., Falcke H., H?randel J. R., Krause M., Nelles A., Rachen J. P., Scholten O., Veen S., Thoudam S., Trinh T. N. G.. J. Cosmol. Astropart. Phys., 2014, 2014(10): 014-014 CrossRef ADS arXiv Google Scholar

[276] H. Carduner, D. Charrier, R. Dallier, L. Denis, A. Escudie, D. Garc'ıa-Fernández, F. Gaté, A. Lecacheux, V. Marin, L. Martin, B. Revenu, and M. Tueros,. arXiv Google Scholar

[277] V. Niess, and O. Martineau-Huynh,. arXiv Google Scholar

[278] Niess, Valentin, DANTON: DecAyiNg Taus frOm Neutrinos, (2017), https://github.com/niess/danton. Google Scholar

[279] Dulat S., Hou T. J., Gao J., Guzzi M., Huston J., Nadolsky P., Pumplin J., Schmidt C., Stump D., Yuan C. P.. Phys. Rev. D, 2016, 93: 033006 CrossRef ADS arXiv Google Scholar

[280] Niess, Valentin, PUMAS : Semi Analytical MUons -or taus- Propagation backwards, pages (2016), http://niess.github.io/pumas-pages. Google Scholar

[281] Iyer Dutta S., Reno M. H., Sarcevic I., Seckel D.. Phys. Rev. D, 2001, 63: 094020 CrossRef ADS Google Scholar

[282] Jadach S., Wa?s Z., Decker R., Kühn J. H.. Comput. Phys. Commun., 1993, 76: 361-380 CrossRef ADS Google Scholar

[283] V. Niess, TURTLE: Topographic Utilities for Transporting Particles Over Long Ranges, (2016), https://niess.github.io/turtle/. Google Scholar

[284] NASA, and JPL, NASA Shuttle Radar Topography Mission Global 1 arc second , NASA EOSDIS Land Processes DAAC (NASA, 2013). Google Scholar

[285] Niess V., Barnoud A., Carloganu C., Le Ménédeu E.. Comput. Phys. Commun., 2018, 229: 54-67 CrossRef ADS arXiv Google Scholar

[286] V. Niess, RETRO: Radio nEuTRino simulatiOn (RETRO) for GRAND (2017), https://github.com/grand-mother/retro. Google Scholar

[287] K. D. de Vries O. Scholten and K. Werner AIP Conf. Proc. 1535, 138 (2013). Google Scholar

[288] A. Zilles, O. Martineau-Huynh, K. Kotera, M. Tueros, K. de Vries, W. Carvalho Jr., V. Niess, N. Renault-Tinacci, and V. Decoene,. arXiv Google Scholar

[289] M. Ave, R. Engel, and J. Gonzalez, in Extensive Air Shower Universality of Ground Particle Distributions, 32nd International Cosmicray Conference (Beijing, 2011). Google Scholar

[290] C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley, Hoboken, 2005). Google Scholar

[291] International Telecomunication Union Propagation by diffraction---Recommendation ITU-R P.526-14 Technical Report (ITU, 2018). Google Scholar

[292] F. Führer, T. Charnock, A. Zilles, and M. Tueros,. arXiv Google Scholar

[293] M. Erdmann, F. Schlueter, and R. Smida,. arXiv Google Scholar

[294] K. Fang, J. Álvarez-Mu niz, R. A. Batista, M. Bustamante, W. Carvalho, D. Charrier, I. Cognard, S. De Jong, K. D. de Vries, C. Finley, Q. Gou, J. Gu, C. Guépin, J. Hanson, H. Hu, K. Kotera, S. Le Coz, Y. Mao, O. Martineau-Huynh, C. Medina, M. Mostafa, F. Mottez, K. Murase, V. Niess, F. Oikonomou, F. Schröder, C. Tasse, C. Timmermans, N. Renault-Tinacci, M. Tueros, X. Wu, P. Zarka, A. Zech, Y. Zhang, Q. Zheng, and A. Zilles, in Proceedings of the 35th International Cosmic Ray Conference (ICRC2017) (PoS, Bexco, 2017), p. 996. Google Scholar

[295] Feldman G. J., Cousins R. D.. Phys. Rev. D, 1998, 57: 3873-3889 CrossRef ADS Google Scholar

[296] Abbasi R. U.. (The Telescope Array Collaboration). Astropart. Phys., 2016, 80: 131-140 CrossRef ADS Google Scholar

[297] Aab A.. (The Pierre Auger Collaboration). Phys. Rev. Lett., 2016, 116: 241101 CrossRef PubMed ADS arXiv Google Scholar

[298] Kostunin, D. and others, in Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017) (PoS, Busan, 2017),. arXiv Google Scholar

[299] Ardouin D., Carloganu C., Charrier D., Gou Q., Hu H., Kai L., Lautridou P., Martineau-Huynh O., Niess V., Ravel O., Saugrin T., Wu X., Zhang J., Zhang Y., Zhao M., Zheng Y.. Astroparticle Phys., 2011, 34: 717-731 CrossRef ADS arXiv Google Scholar

[300] Apel W. D., Arteaga-Velázquez J. C., B?hren L., Bekk K., Bertaina M., Biermann P. L., Blümer J., Bozdog H., Brancus I. M., Cantoni E., Chiavassa A., Daumiller K., de Souza V., Pierro F. D., Doll P., Engel R., Falcke H., Fuchs B., Gemmeke H., Grupen C., Haungs A., Heck D., H?randel J. R., Horneffer A., Huber D., Huege T., Isar P. G., Kampert K. H., Kang D., Kr?mer O., Kuijpers J., Link K., ?uczak P., Ludwig M., Mathes H. J., Melissas M., Morello C., Oehlschl?ger J., Palmieri N., Pierog T., Rautenberg J., Rebel H., Roth M., Rühle C., Saftoiu A., Schieler H., Schmidt A., Schoo S., Schr?der F. G., Sima O., Toma G., Trinchero G. C., Weindl A., Wochele J., Zabierowski J., Zensus J. A.. J. Cosmol. Astropart. Phys., 2014, 2014(09): 025-025 CrossRef ADS arXiv Google Scholar

[301] Corstanje A., Schellart P., Nelles A., Buitink S., Enriquez J. E., Falcke H., Frieswijk W., H?randel J. R., Krause M., Rachen J. P., Scholten O., ter Veen S., Thoudam S., Trinh T. N. G., van den Akker M., Alexov A., Anderson J., Avruch I. M., Bell M. E., Bentum M. J., Bernardi G., Best P., Bonafede A., Breitling F., Broderick J., Brüggen M., Butcher H. R., Ciardi B., de Gasperin F., de Geus E., de Vos M., Duscha S., Eisl?ffel J., Engels D., Fallows R. A., Ferrari C., Garrett M. A., Grie?meier J., Gunst A. W., Hamaker J. P., Hoeft M., Horneffer A., Iacobelli M., Juette E., Karastergiou A., Kohler J., Kondratiev V. I., Kuniyoshi M., Kuper G., Maat P., Mann G., McFadden R., McKay-Bukowski D., Mevius M., Munk H., Norden M. J., Orru E., Paas H., Pandey-Pommier M., Pandey V. N., Pizzo R., Polatidis A. G., Reich W., R?ttgering H., Scaife A. M. M., Schwarz D., Smirnov O., Stewart A., Steinmetz M., Swinbank J., Tagger M., Tang Y., Tasse C., Toribio C., Vermeulen R., Vocks C., van Weeren R. J., Wijnholds S. J., Wucknitz O., Yatawatta S., Zarka P.. Astroparticle Phys., 2015, 61: 22-31 CrossRef ADS arXiv Google Scholar

[302] O. Martineau-Huynh, (TREND),. arXiv Google Scholar

[303] Aab A.. (The Pierre Auger Collaboration). J. Inst., 2016, 11: P01018-P01018 CrossRef ADS arXiv Google Scholar

[304] Aab A.. (The Pierre Auger Collaboration). Phys. Rev. D, 2016, 93: 122005 CrossRef ADS arXiv Google Scholar

[305] Kostunin D., Bezyazeekov P. A., Hiller R., Schr?der F. G., Lenok V., Levinson E.. Astropart. Phys., 2016, 74: 79-86 CrossRef ADS arXiv Google Scholar

[306] Apel W. D., Arteaga-Velazquez J. C., B?hren L., Bekk K., Bertaina M., Biermann P. L., Blümer J., Bozdog H., Brancus I. M., Cantoni E., Chiavassa A., Daumiller K., de Souza V., Di Pierro F., Doll P., Engel R., Falcke H., Fuchs B., Fuhrmann D., Gemmeke H., Grupen C., Haungs A., Heck D., H?randel J. R., Horneffer A., Huber D., Huege T., Isar P. G., Kampert K. H., Kang D., Kr?mer O., Kuijpers J., Link K., ?uczak P., Ludwig M., Mathes H. J., Melissas M., Morello C., Oehlschl?ger J., Palmieri N., Pierog T., Rautenberg J., Rebel H., Roth M., Rühle C., Saftoiu A., Schieler H., Schmidt A., Schr?der F. G., Sima O., Toma G., Trinchero G. C., Weindl A., Wochele J., Zabierowski J., Zensus J. A.. Phys. Rev. D, 2014, 90: 062001 CrossRef ADS arXiv Google Scholar

[307] Buitink S., Corstanje A., Enriquez J. E., Falcke H., H?randel J. R., Huege T., Nelles A., Rachen J. P., Schellart P., Scholten O., ter Veen S., Thoudam S., Trinh T. N. G.. Phys. Rev. D, 2014, 90: 082003 CrossRef ADS arXiv Google Scholar

[308] Bezyazeekov P. A., Budnev N. M., Chernykh D., Fedorov O., Gress O. A., Haungs A., Hiller R., Huege T., Kazarina Y., Kleifges M., Kostunin D., Korosteleva E. E., Kuzmichev L. A., Lenok V., Lubsandorzhiev N., Marshalkina T., Mirgazov R. R., Monkhoev R., Osipova E., Pakhorukov A., Pankov L., Prosin V. V., Schr?der F. G., Shipilov D., Zagorodnikov A.. Phys. Rev. D, 2018, 97: 122004 CrossRef ADS arXiv Google Scholar

[309] Stappers B. W., Hessels J. W. T., Alexov A., Anderson K., Coenen T., Hassall T., Karastergiou A., Kondratiev V. I., Kramer M., van Leeuwen J., Mol J. D., Noutsos A., Romein J. W., Weltevrede P., Fender R., Wijers R. A. M. J., B?hren L., Bell M. E., Broderick J., Daw E. J., Dhillon V. S., Eisl?ffel J., Falcke H., Griessmeier J., Law C., Markoff S., Miller-Jones J. C. A., Scheers B., Spreeuw H., Swinbank J., ter Veen S., Wise M. W., Wucknitz O., Zarka P., Anderson J., Asgekar A., Avruch I. M., Beck R., Bennema P., Bentum M. J., Best P., Bregman J., Brentjens M., van de Brink R. H., Broekema P. C., Brouw W. N., Brüggen M., de Bruyn A. G., Butcher H. R., Ciardi B., Conway J., Dettmar R. J., van Duin A., van Enst J., Garrett M., Gerbers M., Grit T., Gunst A., van Haarlem M. P., Hamaker J. P., Heald G., Hoeft M., Holties H., Horneffer A., Koopmans L. V. E., Kuper G., Loose M., Maat P., McKay-Bukowski D., McKean J. P., Miley G., Morganti R., Nijboer R., Noordam J. E., Norden M., Olofsson H., Pandey-Pommier M., Polatidis A., Reich W., R?ttgering H., Schoenmakers A., Sluman J., Smirnov O., Steinmetz M., Sterks C. G. M., Tagger M., Tang Y., Vermeulen R., Vermaas N., Vogt C., de Vos M., Wijnholds S. J., Yatawatta S., Zensus A.. Astron. Astrophys., 2011, 530: A80 CrossRef ADS arXiv Google Scholar

[310] Q. Gou (GRANDProto35), in Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017) (PoS, Busan, 2017). Google Scholar

[311] Ardouin D., Belletoile A., Berat C., Breton D., Charrier D., Chauvin J., Chendeb M., Cordier A., Dagoret-Campagne S., Dallier R., Denis L., Dumez-Viou C., Fabrice C., Gar?on T., Garrido X., Gautherot N., Gousset T., Haddad F., Koang D. H., Lamblin J., Lautridou P., Lebrun D., Lecacheux A., Lefeuvre F., Martin L., Meyer E., Meyer F., Meyer-Vernet N., Monnier-Ragaigne D., Montanet F., Payet K., Plantier G., Ravel O., Revenu B., Riviere C., Saugrin T., Sourice A., Stassi P., Stutz A., Valcares S.. Astropart. Phys., 2009, 31: 192-200 CrossRef ADS arXiv Google Scholar

[312] Martineau-Huynh O.. (GRAND). EPJ Web Conf., 2017, 135: 02001 CrossRef ADS arXiv Google Scholar

[313] E. M. Holt, in The Pierre Auger Observatory: Contributions to the 35th International Cosmic Ray Conference (ICRC 2017) (PoS, 2017), p.492. Google Scholar

[314] Zas E.. New J. Phys., 2005, 7: 130-130 CrossRef ADS arXiv Google Scholar

[315] Nagano M., Watson A. A.. Rev. Mod. Phys., 2000, 72: 689-732 CrossRef ADS Google Scholar

[316] Letessier-Selvon A., Stanev T.. Rev. Mod. Phys., 2011, 83: 907-942 CrossRef ADS arXiv Google Scholar

[317] Grenier I. A., Black J. H., Strong A. W.. Annu. Rev. Astron. Astrophys., 2015, 53: 199-246 CrossRef ADS Google Scholar

[318] B. R. Dawson, M. Fukushima, and P. Sokolsky,. arXiv Google Scholar

[319] Billoir P., Settimo M., Blanco M.. Astropart. Phys., 2016, 74: 14-26 CrossRef ADS arXiv Google Scholar

[320] Abu-Zayyad T., Belov K., Bird D. J., Boyer J., Cao Z., Catanese M., Chen G. F., Clay R. W., Covault C. E., Cronin J. W., Dai H. Y., Dawson B. R., Elbert J. W., Fick B. E., Fortson L. F., Fowler J. W., Gibbs K. G., Glasmacher M. A. K., Green K. D., Ho Y., Huang A., Jui C. C., Kidd M. J., Kieda D. B., Knapp B. C., Ko S., Larsen C. G., Lee W., Loh E. C., Mannel E. J., Matthews J., Matthews J. N., Newport B. J., Nitz D. F., Ong R. A., Simpson K. M., Smith J. D., Sinclair D., Sokolsky P., Sommers P., Song C., Tang J. K. K., Thomas S. B., van der Velde J. C., Wiencke L. R., Wilkinson C. R., Yoshida S., Zhang X. Z.. Phys. Rev. Lett., 2000, 84: 4276-4279 CrossRef PubMed ADS arXiv Google Scholar

[321] Fomin Y. A., Kalmykov N. N., Karpikov I. S., Kulikov G. V., Kuznetsov M. Y., Rubtsov G. I., Sulakov V. P., Troitsky S. V.. Astropart. Phys., 2017, 92: 1-6 CrossRef ADS arXiv Google Scholar

[322] Dembinski H.. (the IceCube Collaboration). EPJ Web Conf., 2017, 145: 01003 CrossRef Google Scholar

[323] Bogdanov A. G., Kokoulin R. P., Mannocchi G., Petrukhin A. A., Saavedra O., Shutenko V. V., Trinchero G., Yashin I. I.. Astropart. Phys., 2018, 98: 13-20 CrossRef ADS Google Scholar

[324] Bellido J. A., Clay R. W., Kalmykov N. N., Karpikov I. S., Rubtsov G. I., Troitsky S. V., Ulrichs J.. Phys. Rev. D, 2018, 98: 023014 CrossRef ADS arXiv Google Scholar

[325] M. Plum, et al. (The Pierre Auger Collaboration), JPS Conf. Proc. 19, 011011 (2018). Google Scholar

[326] Aab A.. (The Pierre Auger Collaboration). Phys. Rev. D, 2016, 93: 072006 CrossRef ADS arXiv Google Scholar

[327] Aab A.. (The Pierre Auger Collaboration). Phys. Rev. D, 2017, 96: 122003 CrossRef ADS arXiv Google Scholar

[328] E. Kido, in Proceedings of the 38th International Conference on High Energy Physics (ICHEP 2016) (PoS, Chicago, 2016). Google Scholar

[329] C. Timmermans, in The Pierre Auger Observatory: Contributions to the 35th International Cosmic Ray Conference (ICRC 2017) (PoS, Busan, 2017), p. 392. Google Scholar

  • Figure 1

    (Color online) The science goals of GRAND, grouped according to the detector construction stage at which they first become accessible.

  • Figure 2

    (Color online) Propagation of UHE cosmic rays from the astrophysical sources to the Earth. Via interactions on cosmic photo backgrounds, cosmic rays create UHE gamma rays—which cascade down in energy—and UHE neutrinos—which oscillate during propagation. At Earth, all three UHE messengers may induce extensive air showers in the atmosphere.

  • Figure 3

    (Color online) GRAND target zone overlaid on the energy spectra of astrophysical and cosmogenic messengers. For gamma rays, we show the extragalactic gamma-ray background (EGB) measured by Fermi-LAT [10,11]and, shaded, the contribution to the EGB due to unresolved, non-blazar sources. For neutrinos, we show the all-flavor 6-year measurements by IceCube of High Energy Starting Events (HESE) [12]and through-going muons [8]. For cosmic rays, we show measurements by KASCADE-Grande [13], Auger [14], and the Telescope Array (TA), including the Telescope Array Low Energy (TALE) extension [15]. We show the predicted conservative and standard ranges of cosmogenic neutrino fluxes from ref. [16](see the main text for details) and the predicted range of cosmogenic gamma rays from ref. [17]bracketing light to pure-iron UHECR models.

  • Figure 4

    (Color online) Predicted cosmogenic neutrino flux, compared to experimental upper limits and sensitivities. Gray-shaded regions are generated by fitting UHECR simulations to Auger spectral and mass-composition data [16]. See the main text for details. The astrophysical neutrino signal below 3 PeV was reported by IceCube [25]. We show the most restrictive upper limit (90% C.L.), from IceCube [26]; limits from Auger [27]and ANITA [28]are less restrictive. Projected 3-year sensitivities of planned instruments are for ARA-37 [29](trigger level), ARIANNA [30](“optimal wind” sensitivity), POEMMA [31](assuming full-sky coverage), the 10000-antenna array GRAND10k, and the full 200000-antenna array GRAND200k. The GRAND10k band is spanned by the choice of antenna detection voltage threshold, from a conservative threshold at the top of the band to an aggressive one at the bottom of it; see sect. sect. 4.5for details.

  • Figure 5

    (Color online) Predicted neutrino flux from different classes of astrophysical sources, compared to upper limits on UHE neutrinos from IceCube [58]and Auger [27], and projected 3-year sensitivity of GRAND10k and GRAND200k (sects. sect. 5.3and sect. 5.4). Several source classes can account for the observed UHECR spectrum: galaxy clusters with central sources [50,53], fast-spinning newborn pulsars [55], active galactic nuclei [42], and afterglows of gamma-ray bursts [59].

  • Figure 6

    (Color online) Significance of detection of point sources of UHE neutrinos by experiments with various angular resolutions and numbers of detected events. The source density is assumed to be $n_\text{s}=~10^{-7}\,\rm~Mpc^{-3}$ up to 2 Gpc. Each shaded box represents uncertainties in the source spectrum and detector angular resolution. Exposure times are 15 years for IceCube, 3 years for ARA, and 3 years for GRAND. Figure adapted from ref. [56].

  • Figure 7

    (Color online) (a) Field of view of GRAND200k for a 1-h exposure, shaded purple, in Galactic coordinates. Overlaid dots mark the positions of sources from the Fermi 3FHL catalog [60]; red dots indicate the most significant (test statistic TS$>$25), brightest Fermi sources at energies $>$50 GeV with spectral index $<$2.5, and maximum photon energy $>$100 GeV. (b) Effective area of GRAND200k as a function of position in the sky in Galactic coordinates for UHE neutrinos with energy $3~\times~10^9$ GeV. Stars represent the coordinates of interesting astrophysical sources in the field of view of GRAND.

  • Figure 8

    (Color online) Neutrino fluence from transient sources. Short-duration transients—a short-duration GRB (sGRB) and a GRB afterglow—are compared to the GRAND200k instantaneous sensitivity at zenith angle $\theta_\text{z}=~90^\circ$ (solid black line). A long-duration transient—a TDE—is compared to the GRAND200k declination-averaged sensitivity (gray-shaded band). The stacked fluence from 10 six-month-long blazar flares in the declination range $40^\circ<~|\delta|~<~45^\circ$ is compared to the GRAND200k sensitivity for a fixed $\delta=45^\circ$ (dashed black line). See the main text for details. The sources were assumed to lie at distances such to allow for a conservative rate of $\sim$1 event per century, using population rates inferred from ref. [63]for short-duration GRBs and associated neutron-star mergers, ref. [59]for GRB afterglows, and ref. [62]for TDEs. The sensitivity is the Feldman-Cousins upper limit per decade in energy at 90% C.L., assuming a power-law neutrino spectrum $\propto~E_{\nu}^{-2}$, for no candidate events and null background.

  • Figure 9

    (Color online) Predicted cosmogenic UHE photon flux from pure-proton and pure-iron UHECRs, as estimated in ref. [149]. For comparison, we include the existing upper limits from Auger and the Telescope Array (TA) [134,135,137], the projected reach of Auger by 2025, and of GRAND after 3 years of operation.

  • Figure 10

    (Color online) (a) The relative annual geometric exposure to UHECRs of GRAND, Auger, and TA. At high energies these detectors are fully efficient so the geometric exposure approximates well the true exposure. (b) 3-year integrated exposure to UHECRs of GRAND in Galactic coordinates.

  • Figure 11

    (Color online) (a) Simulated FRB with a flat spectrum of 100 Jy, intrinsic duration of 5 ms, and dispersion measure of 500 pc cm$^{-3}$, after being dispersed and scattered by propagation and detected with a resolution of 10 ms and 25 kHz. The dominant Galactic background noise is not shown. The dispersive drift starts at time $t~=~23$ s in our simulation. (b) Result of a blind search for FRBs using GRAND. For each trial DM value, the dynamic spectrum is de-dispersed and integrated in frequency, and the resulting intensity profile is normalized by its standard deviation after subtracting its mean, i.e. it is displayed as a signal-to-noise ratio (SNR). The SNR is small except near $t~=23$ s, where it increases to reach a maximum value of $\sim$46 at 500 pc cm$^{-3}$.

  • Figure 12

    (a) Simulated giant radio pulse (GP) with intrinsic duration of 1 ms, and dispersion measure of 57 pc cm$^{-3}$, after being dispersed and scattered by propagation and detected with a resolution of 20 ms and 50 kHz. The pulse is superimposed onto Galactic noise fluctuations, the average value of which is subtracted at each frequency. The flux is given in Jy above the sky background. (b) Result of a blind search for GPs using GRAND. The signal-to-noise ratio (SNR) is saturated at 3.5, at best-fit values 57 pc cm$^{-3}$ and 15 s. (c) Fixing the dispersion measure to its best-fit value, the SNR reaches 42.

  • Figure 13

    (Color online) Measurements of $\langle~X_{\rm~max}\rangle$ for air showers initiated by UHECRs by non-imaging Cherenkov detectors—Yakutsk [234,235], Tunka [236]—fluorescence detectors—HiRes-MIA [237], HiRes [238], Telescope Array (TA) [239], Auger [240,241]—and a radio detector—LOFAR [242]—compared to simulations performed using hadronic interaction models QGSJETII-04, Sybill 2.3c, and EPOS LHC, assuming a pure-proton or pure-iron composition. HiRes and TA data have been corrected for detector effects by shifting them by an amount $\langle~\Delta~\rangle$, to allow comparison with the unbiased Auger data. Gamma-ray-initiated air showers are denoted by open squares. The effect of the geomagnetic field, taken here at the Auger site, depends on the direction of the shower [243].

  • Figure 14

    (Color online) Flux density $\Phi$ as a function of frequency and off-axis angle $\psi$ for an air shower with zenith angle $\theta_\text{z}=71^{\circ}$ and energy of $10^{8.8}$ GeV, simulated with ZHAireS [244]. At each frequency, the flux density is computed as the power spectrum averaged over a period of 10 ns. Figure taken from ref. [232].

  • Figure 15

    (Color online) Radio footprint for various shower inclinations, from CoREAS simulations [250]. Figure taken from ref. [251].

  • Figure 16

    (Color online) GRAND detection principle, illustrated for one of the 10000-antenna GRAND10k arrays located at a hotspot. See main text for details. Ultra-high-energy cosmic rays and gamma rays (not shown) interact in the atmosphere, while ultra-high-energy $\nu_\tau$ interact underground and create a high-energy tau that exits into the atmosphere and decays. The ensuing extensive air showers emit a radio signal that is detected by the antennas. The inset shows a sketch of the [1510 1481 1176 1167 797 295 277 271 262]designed for GRAND.

  • Figure 17

    Conversion probability of a $\nu_\tau$ into a tau emerging with $1^\circ$ of elevation from a flat Earth made up of standard rock, with density $2.65$ g cm$^{-3}$, and probability of interaction in the atmosphere of a downward-going $\overline{\nu}_e$ with $1^\circ$ of elevation. The latter assumes the U.S. standard atmosphere density profile, a spherical Earth, and detection at sea level. The peak around 6.3 PeV is due to the $\bar{\nu}_e$ Glashow resonant cross section [263], not including Doppler broadening from the motion of atomic electrons [264]. The probabilities were computed using NuTauSim [262].

  • Figure 18

    (Color online) Simulation of the signal-to-noise (SNR) ratio seen in a typical GRAND [1510 1481 1176 1167 797 295 277 271 262]located on the Cherenkov ring made by a slightly up-going neutrino-initiated air shower of energy 0.5 EeV. The lower and upper cut-off in frequency were varied to maximize the SNR and optimize the frequency band.

  • Figure 19

    (Color online) Two-dimensional ((a), (c)) and three-dimensional ((b), (d)) total gain of the $X$-arm of the GRAND [1510 1481 1176 1167 797 295 277 271 262]as a function of direction. (a), (b) At 50 MHz; (c), (d) at 100 MHz.

  • Figure 20

    (Color online) Sources of external radio noise as a function of frequency, expressed as temperature or noise figure $F~=~10~\log_{10}(1+T/T_{\rm~amb})$. The blackbody radiation emitted by the ground corresponds to a straight line at $T~=~T_{\rm~amb}=~290$ K. Figure taken from ref. [226], adapted from ref. [269].

  • Figure 21

    (Color online) Total stationary noise level $V_{\rm~rms}$ expected in one arm of a GRAND [1510 1481 1176 1167 797 295 277 271 262]oriented along the East-West direction, as a function of local sidereal time.

  • Figure 22

    (Color online) Elevation map of the GRAND10k simulation area, showing UTM altitude a.s.l. The white area encloses HotSpot1, where 10000 simulated antennas are deployed over 1000 km$^2$.

  • Figure 23

    (Color online) One simulated neutrino event displayed over the ground topography of HotSpot1. The large red circle shows the position of the tau production and the red star, its decay. The dotted line indicates the shower trajectory. Circles mark the positions of triggered antennas. The color code represents the peak-to-peak voltage amplitude of the antennas. The Southern border of HotSpot1 is indicated with a black line.

  • Figure 24

    (Color online) Results of the simulation of a GRAND 10000-antenna detector located at HotSpot1. (a) Exposure as a function of neutrino energy, using an aggressive (30 $\mu$V) and a conservative (75 $\mu$V) antenna detection threshold, and two choices of wave propagation. See the main text for details. (b) Simulated event rate of neutrino-initiated showers, computed using the aggressive threshold, as a function of elevation angle $\alpha$ for neutrino flux set to the Waxman-Bahcall bound [43]. Downgoing trajectories have $\alpha<0^{\circ}$ and up-going trajectories have $\alpha>0^{\circ}$.

  • Figure 25

    (Color online) Effective area of GRAND10k HotSpot1, computed from simulations using the aggressive antenna detection threshold (see fig 24(a)), and of GRAND200k, estimated by multiplying the GRAND10k HotSpot1 effective area by a factor of 20. See the main text for details.

  • Figure 26

    (Color online) Peak-to-peak amplitudes induced on the E-W arms of GRAND HorizonAntennasc s

  • Figure 27

    (Color online) Angular resolution $\Delta~\psi$ inferred from 1370 simulated air showers detected by a GRAND toy-model array. See the main text for details. (a) Resolution $\Delta~\psi$ as a function of elevation angle with respect to the horizontal. The error is defined as $\Delta~\psi=\arccos(\cos\theta^*\cos\theta~+~\cos(\phi^*-~\phi)\sin\theta\sin\theta^*)$, with ($\theta,~\phi$) and ($\theta^*,~\phi^*$) the true and reconstructed directions of the shower respectively. (b) Resolution as a function of height difference between antennas participating in each detected shower.

  • Figure 28

    (Color online) Reconstruction of $X_{\rm~max}$ for the test shower used in our example. Each point represents one of the simulated companion showers against which the test shower is fitted. See the main text for details. The $x$-axis is divided into nine bins of $X_{\rm~max}$, and the minimum $\chi_{\min}^2$ and standard deviation $\sigma$ is calculated for each. Only the showers represented by filled symbols—for which $\chi^2~-~\chi_{\min}^2~<~\sigma$—were used in fitting the parabola from which the best-fit value of $X_{\rm~max}$ of the test event is inferred.

  • Figure 29

    (Color online) Timeline of the construction stages of GRAND.

  • Figure 30

    (Color online) One of the antennas used in GRANDProto35, deployed at the construction sites of GRANDProto35 [310]and TREND [272,299], in the Tian Shan mountains of China. Photo by Olivier Martineau-Huynh.

  • Figure 31

    (Color online) Monitoring measurement of the mean voltage of the signal in a GRANDProto35 radio-detection unit during a period of 25 d at the array site, for West-East (blue), South-North (green), and vertical (red) antenna-arm channels. The periodic fluctuations correspond to the daily transit of the Galactic plane in the antenna field of view. Figure taken from ref. [310].

  • Figure 32

    (Color online) Possible layout for the GRANDProto300 radio array at one of the candidate sites. The layout includes 135 antennas deployed on a 1-km square grid (green), with two denser in-fills, one containing 116 antennas on a of 500-m spacing (blue), and one containing 49 antennas on a 250-m spacing (red).

  • Figure 33

    (Color online) A prototype of the [1510 1481 1176 1167 797 295 277 271 262] in test during a GRANDProto300 site survey. Photo by Feng Yang.

  • Figure 34

    (Color online) Simulated 1-year UHECR exposure for the GRANDProto300 array, assuming the layout in fig 32. The aggressive and conservative thresholds correspond to a minimum peak-to-peak amplitude of 30 and 75 $\mu$V, respectively, simultaneously measured in at least five units; see sect. sect. 4.5.1. Event rates are, respectively, $1.2~\times~10^6$ and $2.5~\times~10^6$ events per year.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1