logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 63 , Issue 4 : 249502(2020) https://doi.org/10.1007/s11433-019-1432-6

Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

Shuang-Nan Zhang 1,2,*, TiPei Li 1,2,3, FangJun Lu 1, LiMing Song 1,2, YuPeng Xu 1,2, CongZhan Liu 1, Yong Chen 1, XueLei Cao 1, QingCui Bu 1, Zhi Chang 1, Gang Chen 1, Li Chen 5, TianXiang Chen 1, YiBao Chen 4, YuPeng Chen 1, Wei Cui 1,3, WeiWei Cui 1, JingKang Deng 4, YongWei Dong 1, YuanYuan Du 1, MinXue Fu 4, GuanHua Gao 1,2, He Gao 1,2, Min Gao 1, MingYu Ge 1, YuDong Gu 1, Ju Guan 1, Can Gungor 1, ChengCheng Guo 1,2, DaWei Han 1, Wei Hu 1, Yue Huang 1,2, Jia Huo 1, ShuMei Jia 1, LuHua Jiang 1, WeiChun Jiang 1, Jing Jin 1, YongJie Jin 6, Bing Li 1, ChengKui Li 1, Gang Li 1, MaoShun Li 1, Wei Li 1, Xian Li 1, XiaoBo Li 1, XuFang Li 1, YanGuo Li 1, ZiJian Li 1,2, ZhengWei Li 1, XiaoHua Liang 1, JinYuan Liao 1, GuoQing Liu 4, HongWei Liu 1, ShaoZhen Liu 1, XiaoJing Liu 1, Yuan Liu 7, YiNong Liu 6, Bo Lu 1, XueFeng Lu 1, Tao Luo 1, Xiang Ma 1, Bin Meng 1, Yi Nang 1,2, JianYin Nie 1, Ge Ou 1, JinLu Qu 1, Na Sai 1,2, RenCheng Shang 4, GuoHong Shen 8, Liang Sun 1, Ying Tan 1, Lian Tao 1, YouLi Tuo 1,2, Chen Wang 2,7, ChunQin Wang 8, GuoFeng Wang 1, HuanYu Wang 1, Juan Wang 1, WenShuai Wang 1, YuSa Wang 1, XiangYang Wen 1, BaiYang Wu 1,2, BoBing Wu 1, Mei Wu 1, GuangCheng Xiao 1,2, ShaoLin Xiong 1, LinLi Yan 1,2, JiaWei Yang 1, Sheng Yang 1, YanJi Yang 1, QiBin Yi 1, Bin Yuan 8, AiMei Zhang 1, ChunLei Zhang 1, ChengMo Zhang 1, Fan Zhang 1, HongMei Zhang 1, Juan Zhang 1, Qiang Zhang 1, ShenYi Zhang 8, Shu Zhang 1, Tong Zhang 1, WanChang Zhang 1, Wei Zhang 1,2, WenZhao Zhang 5, Yi Zhang 1, YiFei Zhang 1, YongJie Zhang 1, Yue Zhang 1,2, Zhao Zhang 4, Zhi Zhang 6, ZiLiang Zhang 1, HaiSheng Zhao 1, XiaoFan Zhao 1,2, ShiJie Zheng 1, JianFeng Zhou 6, YuXuan Zhu 1, Yue Zhu 1, RenLin Zhuang 6, (The -HXMT team)
More info
  • ReceivedAug 9, 2019
  • AcceptedAug 20, 2019
  • PublishedFeb 21, 2020
PACS numbers

Abstract

As China’s first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.


Funded by

This work made use of the data from the Insight-HXMT mission

a project funded by China National Space Administration(CNSA)

the Chinese Academy of Sciences(CAS)

the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant,Nos.,XDA04010202,XDA04010300,XDB23040400)

and the National Natural Science Foundation of China(Grant,Nos.,U1838201,U,1838102)


Acknowledgment

This work made use of the data from the Insight-HXMT mission, a project funded by China National Space Administration (CNSA) and the Chinese Academy of Sciences (CAS). The authors thank support from the National Key Research and Development Program of China (Grant No. 2016YFA0400800), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA04010202, XDA04010300, and XDB23040400), and the National Natural Science Foundation of China (Grant Nos. U1838201, and U1838102).


References

[1] Giacconi R., Kellogg E., Gorenstein P., Gursky H., Tananbaum H.. Astrophys. J., 1971, 165: L27 CrossRef ADS Google Scholar

[2] Bradt H. V. D., Ohashi T., Pounds K. A.. Annu. Rev. Astron. Astrophys., 1992, 30: 391 CrossRef ADS Google Scholar

[3] Ubertini P., Lebrun F., Di Cocco G., Bazzano A., Bird A. J., Broenstad K., Goldwurm A., La Rosa G., Labanti C., Laurent P., Mirabel I. F., Quadrini E. M., Ramsey B., Reglero V., Sabau L., Sacco B., Staubert R., Vigroux L., Weisskopf M. C., Zdziarski A. A.. Astron. Astrophys., 2003, 411: L131 CrossRef ADS Google Scholar

[4] Barthelmy S. D., Barbier L. M., Cummings J. R., Fenimore E. E., Gehrels N., Hullinger D., Krimm H. A., Markwardt C. B., Palmer D. M., Parsons A., Sato G., Suzuki M., Takahashi T., Tashiro M., Tueller J.. Space. Sci. Rev., 2005, 120: 143 CrossRef ADS Google Scholar

[5] Harrison F. A., Craig W. W., Christensen F. E., Hailey C. J., Zhang W. W., Boggs S. E., Stern D., Cook W. R., Forster K., Giommi P., Grefenstette B. W., Kim Y., Kitaguchi T., Koglin J. E., Madsen K. K., Mao P. H., Miyasaka H., Mori K., Perri M., Pivovaroff M. J., Puccetti S., Rana V. R., Westergaard N. J., Willis J., Zoglauer A., An H., Bachetti M., Barrière N. M., Bellm E. C., Bhalerao V., Brejnholt N. F., Fuerst F., Liebe C. C., Markwardt C. B., Nynka M., Vogel J. K., Walton D. J., Wik D. R., Alexander D. M., Cominsky L. R., Hornschemeier A. E., Hornstrup A., Kaspi V. M., Madejski G. M., Matt G., Molendi S., Smith D. M., Tomsick J. A., Ajello M., Ballantyne D. R., Baloković M., Barret D., Bauer F. E., Blandford R. D., Brandt W. N., Brenneman L. W., Chiang J., Chakrabarty D., Chenevez J., Comastri A., Dufour F., Elvis M., Fabian A. C., Farrah D., Fryer C. L., Gotthelf E. V., Grindlay J. E., Helfand D. J., Krivonos R., Meier D. L., Miller J. M., Natalucci L., Ogle P., Ofek E. O., Ptak A., Reynolds S. P., Rigby J. R., Tagliaferri G., Thorsett S. E., Treister E., Urry C. M.. Astrophys. J., 2013, 770: 103 CrossRef ADS arXiv Google Scholar

[6] Dai C. J., Wu M, Ma Y. Q., Lu Z. G., Li G. H., Zhang C. M., Fan Z. Z., Xu C. X., Gu Y. D., Zhang X. Y., Li T. P.. Chin. Astron. Astrophys., 1987, 11: 179 CrossRef ADS Google Scholar

[7] Lu Z., Wang J., Li Y., Shen P., Zhu Z., Yang J., Yang H., Lin B., Zhang X., Liu B., Zhang C., Wu M., Li T., Staubert R., Kotov Y. D., Suslov A. Y.. Nucl. Inst. Methods Phys. Res. Sect. A, 1995, 362: 551 CrossRef ADS Google Scholar

[8] Li T. P., Wu M., Lu Z. G., Wang J. Z., Zhang C. S.. Astrophys. Space. Sci., 1993, 205: 381 CrossRef ADS Google Scholar

[9] Li T. P., Wu M.. Astrophys. Space. Sci., 1993, 206: 91 CrossRef ADS Google Scholar

[10] Li T. P., Wu M.. Astrophys. Space. Sci., 1994, 215: 213 CrossRef ADS Google Scholar

[11] T. P. Li, M. Wu, Z.G. Lu, J. Z. Wang, C. S. Zhang, Y. Q. Ma, X. J. Sun, P. R. Sheng, B. J. Lin, Y. G. Li, and C. M. Zhang, Acta Astron. Sin. 35, 105 (1994). Google Scholar

[12] Li T.. Exp. Astron., 1995, 6: 63 CrossRef Google Scholar

[13] Sazonov S., Revnivtsev M., Krivonos R., Churazov E., Sunyaev R.. Astron. Astrophys., 2007, 462: 57 CrossRef ADS Google Scholar

[14] Tueller J., Mushotzky R. F., Barthelmy S., Cannizzo J. K., Gehrels N., Markwardt C. B., Skinner G. K., Winter L. M.. Astrophys. J., 2008, 681: 113 CrossRef ADS arXiv Google Scholar

[15] C. Z. Liu, Y. F. Zhang, X. F. Li, X. F. Lu, Z. Chang, Z. W. Li, A. M. Zhang, Y. J. Jin, H. M. Yu, Z. Zhang, M. X. Fu, Y. B. Chen, J. F. Ji, Y. P. Xu, J. K. Deng, R. C. Shang, G. Q. Liu, F. J. Lu, S. N. Zhang, Y. W. Dong, T. P. Li, M. Wu, Y. G. Li, H. Y. Wang, B. B. Wu, Y. J. Zhang, Z. Zhang, S. L. Xiong, Y. Liu, S. Zhang, H. W. Liu, Y. J. Yang, and F. Zhang, Sci. China-Phys. Mech. Astron. 63, 249503 (2020). Google Scholar

[16] X. L. Cao, W. C. Jiang, B. Meng, W. C. Zhang, T. Luo, S. Yang, C. L. Zhang, Y. D. Gu, L. Sun, X. J. Liu, J. W. Yang, X. Li, Y. Tan, S. Z. Liu, Y. Y. Du, F. J. Lu, Y. P. Xu, J. Guan, S. N. Zhang, H. Y. Wang, T. P. Li, C. M. Zhang, X. Y. Wen, J. L. Qu, L. M. Song, X. B. Li, M. Y. Ge, Y. P. Zhou, S. L. Xiong, S. Zhang, Y. J. Zhang, Z. H. Cheng, F. Zhang, M. S. Li, X. H. Liang, M. Gao, E. B. Yang, X. H. Liu, H. W. Liu, Y. J. Yang, and F. Zhang, Sci. China-Phys. Mech. Astron. 63, 249504 (2020). Google Scholar

[17] Y. Chen, W. W. Cui, W. Li, J. Wang, Y. P. Xu, F. J. Lu, Y. S. Wang, T. X. Chen, D. W. Han, W. Hu, Y. Zhang, J. Huo, Y. J. Yang, M. S. Li, B. Lu, Z. L. Zhang, T. P. Li, S. N. Zhang, S. L. Xiong, S. Zhang, R. F. Xue, X. F. Zhao, Y. Zhu, Y. X. Zhu, H. W. Liu, Y. J. Yang, and F. Zhang, Sci. China-Phys. Mech. Astron. 63, 249505 (2020). Google Scholar

[18] Zhao Y., Zhang B. B., Xiong S. L., Long X., Zhang Q., Song L. M., Sun J. C., Wang Y. H., Li H. C., Bu Q. C., Feng M. Z., Li Z. H., Wen X., Wu B. B., Zhang L. Y., Zhang Y. J., Zhang S. N., Shao J. X.. Res. Astron. Astrophys., 2018, 18: 057 CrossRef ADS arXiv Google Scholar

[19] F. J. Lu, T. P. Li, X. J. Sun, M. Wu, and C. G. Page, Astron. Astrophys. Suppl. 115, 395 (1996). Google Scholar

[20] S. Zhang, T.P. Li, and M. Wu, Astron. Astrophys. 340, 62 (1998). Google Scholar

[21] Zhou X., Li X. Q., Xie Y. N., Liu C. Z., Zhang S., Wu J. J., Zhang J., Li X. F., Zhang Y. F., Li B., Hu H. L., Chen Y. P., Jiang W., Li Z. S.. Exp. Astron., 2014, 38: 433 CrossRef ADS Google Scholar

[22] S. Zhang, Y. P. Chen, Y. N. Xie, X. Q. Li, X. V. Zhou, J. J. Wu, G. F. Wang, Q. F. Han, F. Jia, and F. J. Lu Proc. SPIE 9144, 914455 (2014). Google Scholar

[23] S. M. Jia, X. Ma, Y. Huang, W. Z. Zhang, G. Ou, L. M. Song, J. L. Qu, S. Zhang, and L. Chen, Proc. SPIE 10704, 107041C (2018). Google Scholar

[24] X. B. Li, L. M. Song, X. F. Li, Y. Tan, Y. J. Yang, and M. Y. Ge, Proc. SPIE 10699, 069969 (2018). Google Scholar

[25] Huang Y., Qu J. L., Zhang S. N., Bu Q. C., Chen Y. P., Tao L., Zhang S., Lu F. J., Li T. P., Song L. M., Xu Y. P., Cao X. L., Chen Y., Liu C. Z., Chang H. K., Yu W. F., Weng S. S., Hou X., Kong A. K. H., Xie F. G., Zhang G. B., Zhou J. F., Chang Z., Chen G., Chen L., Chen T. X., Chen Y. B., Cui W., Cui W. W., Deng J. K., Dong Y. W., Du Y. Y., Fu M. X., Gao G. H., Gao H., Gao M., Ge M. Y., Gu Y. D., Guan J., Gungor C., Guo C. C., Han D. W., Hu W., Huo J., Ji J. F., Jia S. M., Jiang L. H., Jiang W. C., Jin J., Jin Y. J., Li B., Li C. K., Li G., Li M. S., Li W., Li X., Li X. B., Li X. F., Li Y. G., Li Z. J., Li Z. W., Liang X. H., Liao J. Y., Liu G. Q., Liu H. W., Liu S. Z., Liu X. J., Liu Y., Liu Y. N., Lu B., Lu X. F., Luo T., Ma X., Meng B., Nang Y., Nie J. Y., Ou G., Sai N., Shang R. C., Sun L., Tan Y., Tao W., Tuo Y. L., Wang G. F., Wang H. Y., Wang J., Wang W. S., Wang Y. S., Wen X. Y., Wu B. B., Wu M., Xiao G. C., Xiong S. L., Xu H., Yan L. L., Yang J. W., Yang S., Yang Y. J., Zhang A. M., Zhang C. L., Zhang C. M., Zhang F., Zhang H. M., Zhang J., Zhang Q., Zhang T., Zhang W., Zhang W. C., Zhang W. Z., Zhang Y., Zhang Y., Zhang Y. F., Zhang Y. J., Zhang Z., Zhang Z., Zhang Z. L., Zhao H. S., Zhao J. L., Zhao X. F., Zheng S. J., Zhu Y., Zhu Y. X., Zou C. L.. Astrophys. J., 2018, 866: 122 CrossRef Google Scholar

[26] B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration, Fermi Gamma-ray Burst Monitor, and INTEGRAL), Astrophys. J. 848, L13 (2017). CrossRef Google Scholar

[27] T. P. Li, et al. (Insight-HXMT Collaboration), Sci. China-Phys. Mech. Astron. 61, 031011 (2018), arXiv: 1710.06065. CrossRef ADS Google Scholar

[28] Y. P. Chen, et al. (Insight-HXMT Collaboration), Astrophys. J. 864, L30 (2018), arXiv: 1910.06320. CrossRef ADS Google Scholar

[29] Tuo Y. L., Ge M. Y., Song L. M., Yan L. L., Bu Q. C., Qu J. L.. Res. Astron. Astrophys., 2019, 19: 087 CrossRef ADS arXiv Google Scholar

[30] Y. Zhang, et al. (Insight-HXMT Collaboration), Astrophys. J. 879, 61 (2019), arXiv: 1906.01938. CrossRef ADS Google Scholar

  • Figure 1

    An artist’s illustration of Insight-HXMT in space.

  • Figure 2

    Demonstration of small sky area scan with Insight-HXMT.

  • Figure 3

    FOVs and their orientations for all telescopes.

  • Figure 4

    The FOVs of Insight-HXMT.

  • Figure 5

    The detector modules and PMTs of Insight-HXMT/HE.

  • Figure 6

    The architecture of one ME detector box.

  • Figure 7

    ME detector array of the flight model in calibration.

  • Figure 8

    The structure of one LE detector box.

  • Figure 9

    The configuration of SEM. The two detectors in grey color are the electron spectrometer (left) and the proton spectrometer (right), and all others measure particle fluxes from different directions.

  • Figure 10

    The effective area of Insight-HXMT.

  • Figure 11

    55Fe spectra measured by the SCD detectors at different temperatures.

  • Figure 12

    Calibration facilities for HE (a) and ME/LE (b).

  • Figure 13

    Overview of the Insight-HXMT HGS.

  • Figure 14

    Input/output for HXMTDAS.

  • Figure 15

    Research fields covered by the core science proposals.

  • Figure 16

    Thermal control of Insight-HXMT.

  • Figure 17

    Insight-HXMT ToO response flow chart.

  • Figure 18

    Launch of Insight-HXMT at Jiuquan Satellite Launch Center in northwestern China.

  • Figure 19

    Measurements of the dead time for HE in orbit. In each panel the horizontal axis measures the arrival time interval of two sequentially recorded X-ray events and the vertical axis gives the corresponding count for each value of measured interval. (a)-(f) show the event arrival time interval curves of main detectors HED0-HED5, respectively. There is an apparent break around 6 μs, which indicates the everage deadtime for HE to process an X-ray event.

  • Figure 20

    Comparisons of the spectra measured in-orbit (a)-(d) and on ground (e)-(h) for ME pixels 0-3 (from left to right) illuminated by the calibration radioactive sources.

  • Figure 21

    Comparisons of the spectra measured in-orbit and on ground for LE pixels illuminated by the calibration radioactive sources.

  • Figure 22

    SAA region mapped by the Insight-HXMT particle monitors.

  • Figure 23

    The pulse profile of the Crab pulsar as observed by HE, ME and LE.

  • Figure 24

    LE time response, which means that the recorded time of a photon is actually later than its arrival time up to 1 ms but with the exact time delay unknown. “Readout pixel” number is proportional to the geometrical distance between the charge readout location of each chip and the specific pixel hit by an incident X-ray photon.

  • Figure 25

    The light curve obtained by LE when it observed the Crab in a scanning observation. The red line shows the fit to the background that changes slowly. The observed data are shown in blue, and the green line shows the observed modulation of the Crab.

  • Figure 26

    The light curves obtained by LE when it scanned across the Crab repeatedly. Each pair of plots denotes the light curve recorded by one LE detector box and the residual after PSF fitting to the source signal.

  • Figure 27

    The X-ray spectrum of supernova remnant Cas A observed by LE.

  • Figure 28

    The spectrum of the onboard radioactive source 241Am obtained by the ME pixels illuminated.

  • Figure 29

    The background spectra of HE main detectors, which show four emission lines that are used to verify/adjust the EC relation of HE.

  • Figure 30

    Fitting to the pulse-on spectrum of the Crab pulsar by using the final ARF files of HE, ME and LE.

  • Figure 31

    Localization capability of HE/CsI for GRBs observation. Each map shows the localization error (color coded) as a function of the azimuthal and polar angles of the direction of a simulated GRB in the coordinates of the Insight-HXMT payload, for top incident (top three panels) and bottom incident (bottom three panels) GRBs. The three columns of maps correspond to three different GRB spectra described by the Band function with parameters (from left to right): α = (–1.9, –1.0, 0.0), β = (–3.9, –2.3, –1.5), Ep = (70, 230, 1000) keV, fluence = (4×10–5, 2×10–5, 1×10–5) erg/cm2, respectively; the integration time is 10 s for all cases.

  • Figure 32

    The HE spectrum of a blank sky region observed by HE module No.15. In the upper panel, the green points are the observational data, the blue points are the contemporary background measured by the blind module No.16, and the red points represent the background estimated based on the background model. The two lower panels show residual of the spectral fit and the ratio between the residuals and the real data of HE module No.15.

  • Figure 33

    Sky coverage of Insight-HXMT till April, 2018. Here the red stars mark the pointed observations, the green belts are the small area scans, the yellow belts are the test of the all-sky survey mode, blue lines are the tracks of slew between different observations.

  • Figure 34

    LE observation of the Galactic cernter region. (a) and (b) are the scan light curves and sky map reconstracted from those light curves with the direct demodulation method.

  • Figure 35

    The low frequency QPOs detected by HE (a), ME (b) and LE (c) under an exposure of 3 ks, during the low/hard state of the outburst from the newly discovered BH candidate MAXI J1535-571 [13].

  • Figure 36

    Pulse profile evolution of the NS star harbored in the newly discovered NS XRB system Swift J0243.6+614 during the outburst. From (a) to (c) are the pulse profiles recorded by HE, ME and LE, respectively.

  • Figure 37

    The sky region of GW170817 monitored by Insight-HXMT/CsI (a), and the light curve (b) covers both time perods around the GW merger and GRB trigger.

  • Figure 38

    The Insight-HXMT detections of the flux limits of the EM counterpart of GW170817 during precursor, GRB trigger and for the extended emission [9].

  • Figure 39

    The short Gamma-ray Burst GRB 170921C detected by Insight-HXMT with a significance of 12σ.

  • Table 1   Mission profiles of HXMT

    Items

    Value

    Orbit

    550 km, 43°

    Weight

    2500 kg

    Payload mass

    1000 kg

    Lifetime

    4 years

    Observation modes

    With collimator: pointed, scanning

    Without collimator: gamma-ray monitoring

    Scanning speed

    0.01(°)/s, 0.03(°)/s, 0.06(°)/s

    Pointing accuracy (3σ)

    ±0.1°

    Attitude measurement accuracy (3σ)

    ±0.01°

    Attitude stability

    ±0.005(°)/s

    Telemetry rate

    120 Mbps

    ToO response time

    ~5 h

  • Table 2   FOVs and their orientations of all telescopes

    Telescope

    Number ofcollimators

    Collimator FOV (FWHM)

    Orientation in thepayload coordinate (°)

    HE

    5

    1.1°×5.7°

    5

    1.1°×5.7°

    60°

    5

    1.1°×5.7°

    –60°

    1

    5.7°×5.7°

    –60°

    1

    5.7°×5.7°

    60°

    1

    1.1°×5.7°(blocked)

    ME

    15

    1°×4°

    90°

    15

    1°×4°

    30°

    15

    1°×4°

    –30°

    2

    4°×4°

    90°

    2

    4°×4°

    30°

    2

    4°×4°

    –30°

    1

    1°×4°(blocked)

    90°

    1

    1°×4°(blocked)

    30°

    1

    1°×4°(blocked)

    –30°

    LE

    20

    1.6°×6°

    90°

    20

    1.6°×6°

    30°

    20

    1.6°×6°

    –30°

    6

    4°×6°

    90°

    6

    4°×6°

    30°

    6

    4°×6°

    –30°

    2

    1.6°×6°, 4°×6°(blocked)

    90°

    2

    1.6°×6°, 4°×6°(blocked)

    30°

    2

    1.6°×6°, 4°×6°(blocked)

    –30°

    2

    60°×2.5°

    90°

    2

    60°×2.5°

    30°

    2

    60°×2.5°

    –30°

  • Table 3   The energy coverage of -HXMT in observing GRB

    Normal mode (keV)

    Low gain/GRB mode (keV)

    NaI measured energy range

    20-250

    100-1250

    CsI measured energy range

    40-600

    200-3000

  • Table 4   The main characteristics of the -HXMT payloads

    Detectors

    Energy range (keV)

    Time resolution

    Energy resolution

    Data handling capability

    LE: SCD, 384 cm2

    ME : Si-PIN, 952 cm2

    HE : NaI/CsI, 5000 cm2

    LE: 1-15

    ME: 5-30

    HE: 20-250

    HE: 25 μs

    ME: 280 μs

    LE: 1 ms

    LE: 2.5% @ 6 keV

    ME: 14% @ 20 keV

    HE: 19% @ 60 keV

    LE: ≤3 Mbps

    ME: ≤3 Mbps

    HE: ≤300 kbps

  • Table 5   Summary of the HXMT observations in the first year

    Mode

    Type

    Source name

    Number of observations

    Exposure (s)

    Point

    supernova remnant

    Cas A

    9

    530

    pulsar

    Crab

    76

    1230

    PSR B0540-69

    7

    250

    PSR B1509-58

    12

    310

    BH binary

    Cyg X-1

    13

    300

    Granat 1716-249

    2

    250

    GRS 1915+105

    24

    720

    GX 339-4

    1

    100

    H 1743-322

    15

    180

    MAXI J1535-571

    18

    430

    MAXI J1543-564

    1

    80

    MAXI J1727-203

    3

    30

    MAXI J1820+070

    61

    1360

    Swift J1658.2-4242

    23

    470

    Cyg X-3

    16

    410

    NS binary

    2A 1822-371

    1

    30

    4U 1728-34

    4

    90

    4U 0115+63

    11

    150

    4U1636-536

    24

    250

    Aql X-1

    3

    30

    Cen X-3

    14

    400

    Cir X-1

    6

    100

    Cyg X-2

    24

    570

    GRO J1008-57

    11

    340

    GRO1750-27

    1

    15

    GS 1826-238

    1

    40

    GX 301-2

    15

    400

    GX9+9

    5

    110

    GX 13+1

    1

    30

    GX 17+2

    10

    230

    H 1417-624

    21

    210

    Her X-1

    16

    470

    IGR J16328-4726

    2

    20

    NGC 6624

    1

    30

    PSR J2032+4127

    4

    40

    Sco X-1

    7

    230

    Swift J1756.9-2508

    1

    40

    Swift J0243.6+6124

    97

    1200

    Vela X-1

    1

    120

    XTE J1946+274

    1

    100

    extra-galactic

    1ES 1959+650

    25

    255

    Cosmos field

    4

    80

    M87

    4

    180

    Perseus

    2

    200

    blank sky

    21 regions

    87

    870

    Small area scan (SAS)

    Crab area

    around the Crab

    9

    550

    galactic plane

    22 regions

    458

    5000

  • Table 6   List of identified sources in the reconstructed map of the Galactic center region shown in Figure

    Source name

    Reconstructed position

    Real position

    Error (°)

    Ra (°)

    Dec (°)

    Ra (°)

    Dec (°)

    GX 9+9

    270.281

    –24.961

    270.284

    –25.079

    0.12

    GX 9+1

    270.440

    –20.553

    270.385

    –20.529

    0.06

    GX 5-1

    274.022

    –13.979

    274.006

    –14.036

    0.06

    GX 17+2

    277.339

    –23.858

    277.367

    –23.797

    0.07

    GX 13+1

    273.595

    –17.072

    273.631

    –17.157

    0.09

    GS 1826-238

    262.973

    –16.858

    262.934

    –16.962

    0.11

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号