logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 63, Issue 3: 237811(2020) https://doi.org/10.1007/s11433-019-1444-6

Spatial confinement tuning of quenched disorder effects and enhanced magnetoresistance in manganite nanowires

More info
  • ReceivedJul 19, 2019
  • AcceptedSep 11, 2019
  • PublishedOct 23, 2019
PACS numbers

Abstract

Complex oxides have rich functionalities and advantages for future technologies. In many systems, quenched disorder often holds the key to determine their physical properties, and these properties can be further tuned by chemical doping. However, understanding the role of quenched disorder is complicated because chemical doping simultaneously alters other physical variables such as local lattice distortions and electronic and magnetic environments. Here, we show that spatial confinement is an effective approach to tuning the level of quenched disorder in a complex-oxide system while leaving other physical variables largely undisturbed. Through the confinement of a manganite system down to quasi-one-dimensional nanowires, we observed that the nature of its metal-insulator phase transition exhibits a crossover from a discontinuous to a continuous characteristic, in close accordance with quenched disorder theories. We argue that the quenched disorder, finite size, and surface effects all contribute to our experimental observations. Noticeably, with reduced nanowire width, the magnetoresistance shows substantial enhancement at low temperatures. Our findings offer new insight into experimentally tuning the quenched disorder effect to achieve novel functionalities at reduced dimensions.


Funded by

the National Key Research and Development Program of China(Grant,No.,2016YFA0300702)

the Shanghai Municipal Natural Science Foundation(Grant,Nos.,18JC1411400,18ZR1403200,17ZR1442600)

the Program of Shanghai Academic Research Leader(Grant,Nos.,18XD1400600,17XD1400400)

and the China Postdoctoral Science Foundation(Grant,Nos.,2016M601488,2017T100265)


Acknowledgment

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300702), the Shanghai Municipal Natural Science Foundation (Grant Nos. 19ZR1402800, 18JC1411400, 18ZR1403200, and 17ZR1442600), the Program of Shanghai Academic Research Leader (Grant Nos. 18XD1400600, and 17XD1400400), and the China Postdoctoral Science Foundation (Grant Nos. 2016M601488, and 2017T100265). We are grateful for theoretical discussion from Shuai Dong and Jun Chen.


References

[1] Cen C., Thiel S., Mannhart J., Levy J.. Science, 2009, 323: 1026 CrossRef PubMed ADS Google Scholar

[2] Takagi H., Hwang H. Y.. Science, 2010, 327: 1601 CrossRef PubMed ADS Google Scholar

[3] Tokura Y., Kawasaki M., Nagaosa N.. Nat. Phys., 2017, 13: 1056 CrossRef ADS Google Scholar

[4] Ha S. D., Ramanathan S.. J. Appl. Phys., 2011, 110: 071101 CrossRef ADS Google Scholar

[5] Waldrop M. M.. Nature, 2016, 530: 144 CrossRef PubMed ADS Google Scholar

[6] Tokura Y., Tomioka Y.. J. Magn. Magn. Mater., 1999, 200: 1 CrossRef ADS Google Scholar

[7] Dagotto E.. Science, 2005, 309: 257 CrossRef PubMed ADS Google Scholar

[8] Campi G., Bianconi A., Poccia N., Bianconi G., Barba L., Arrighetti G., Innocenti D., Karpinski J., Zhigadlo N. D., Kazakov S. M., Burghammer M., Zimmermann M. V., Sprung M., Ricci A.. Nature, 2015, 525: 359 CrossRef PubMed ADS arXiv Google Scholar

[9] Fisher D. S., Fisher M. P. A., Huse D. A.. Phys. Rev. B, 1991, 43: 130 CrossRef PubMed ADS Google Scholar

[10] Nie L., Tarjus G., Kivelson S. A.. Proc. Natl. Acad. Sci., 2014, 111: 7980 CrossRef PubMed ADS arXiv Google Scholar

[11] Imry Y., Wortis M.. Phys. Rev. B, 1979, 19: 3580 CrossRef ADS Google Scholar

[12] Aizenman M., Wehr J.. Phys. Rev. Lett., 1989, 62: 2503 CrossRef PubMed ADS Google Scholar

[13] Burgy J., Mayr M., Martin-Mayor V., Moreo A., Dagotto E.. Phys. Rev. Lett., 2001, 87: 277202 CrossRef PubMed ADS Google Scholar

[14] Greenblatt R. L., Aizenman M., Lebowitz J. L.. Phys. Rev. Lett., 2009, 103: 197201 CrossRef PubMed ADS arXiv Google Scholar

[15] Tomioka Y., Tokura Y.. Phys. Rev. B, 2004, 70: 014432 CrossRef ADS Google Scholar

[16] Pramanik A. K., Banerjee A.. J. Phys.-Condens. Matter, 2008, 20: 275207 CrossRef PubMed ADS arXiv Google Scholar

[17] Rodríguez-Martínez L. M., Attfield J. P.. Phys. Rev. B, 2000, 63: 024424 CrossRef ADS Google Scholar

[18] S. Rößler , Rößler U. K., Nenkov K., Eckert D., Yusuf S. M., Dörr K., Müller K. H.. Phys. Rev. B, 2004, 70: 104417 CrossRef ADS Google Scholar

[19] Uehara M., Mori S., Chen C. H., Cheong S. W.. Nature, 1999, 399: 560 CrossRef ADS Google Scholar

[20] Dagotto E., Hotta T., Moreo A.. Phys. Rep., 2001, 344: 1 CrossRef ADS Google Scholar

[21] Burkhardt M. H., Hossain M. A., Sarkar S., Chuang Y. D., Cruz Gonzalez A. G., Doran A., Scholl A., Young A. T., Tahir N., Choi Y. J., Cheong S. W., Dürr H. A., Stöhr J.. Phys. Rev. Lett., 2012, 108: 237202 CrossRef PubMed ADS Google Scholar

[22] Zhang L., Israel C., Biswas A., Greene R. L., de Lozanne A.. Science, 2002, 298: 805 CrossRef PubMed ADS Google Scholar

[23] Zhai H. Y., Ma J. X., Gillaspie D. T., Zhang X. G., Ward T. Z., Plummer E. W., Shen J.. Phys. Rev. Lett., 2006, 97: 167201 CrossRef PubMed ADS Google Scholar

[24] Singh-Bhalla G., Selcuk S., Dhakal T., Biswas A., Hebard A. F.. Phys. Rev. Lett., 2009, 102: 077205 CrossRef PubMed ADS arXiv Google Scholar

[25] Lin H. X., Miao T., Shi Q., Yu Y., Liu H., Zhang K., Wang W. B., Yin L. F., Shen J.. Sci. China-Phys. Mech. Astron., 2018, 61: 097511 CrossRef ADS Google Scholar

[26] Magen C., Algarabel P. A., Morellon L., Araújo J. P., Ritter C., Ibarra M. R., Pereira A. M., Sousa J. B.. Phys. Rev. Lett., 2006, 96: 167201 CrossRef PubMed ADS Google Scholar

[27] Lynn J. W., Argyriou D. N., Ren Y., Chen Y., Mukovskii Y. M., Shulyatev D. A.. Phys. Rev. B, 2007, 76: 014437 CrossRef ADS Google Scholar

[28] Hattori A. N., Fujiwara Y., Fujiwara K., Nguyen T. V. A., Nakamura T., Ichimiya M., Ashida M., Tanaka H.. Nano Lett., 2015, 15: 4322 CrossRef PubMed ADS Google Scholar

[29] Zhang K., Li L., Li H., Feng Q., Zhang N., Cheng L., Fan X., Hou Y., Lu Q., Zhang Z., Zeng C.. Nano Lett., 2017, 17: 1461 CrossRef PubMed ADS Google Scholar

[30] Brando M., Belitz D., Grosche F. M., Kirkpatrick T. R.. Rev. Mod. Phys., 2016, 88: 025006 CrossRef ADS arXiv Google Scholar

[31] Pesquera D., Herranz G., Barla A., Pellegrin E., Bondino F., Magnano E., Sánchez F., Fontcuberta J.. Nat. Commun., 2012, 3: 1189 CrossRef PubMed ADS Google Scholar

  • Figure 1

    Morphology of LPCMO nanowires. (a)-(h) SEM images of nanowires ranging from 5 μm to 50 nm in width.

  • Figure 2

    (Color online) Resistivity vs. temperature measurements of LPCMO nanowires. (a)-(h) The resistivity vs. temperature curves under cooling and warming. Black, red, green, blue, purple, and orange correspond to the different external magnetic fields applied, and being 0, 1, 2, 3, 5, and 9 T, respectively. (i) The resistivity of the 400 nm nanowire under cooling and warming conditions in a 2 T magnetic field exhibiting clear thermal hysteresis and resistivity jump behaviors. (j) The resistivity of the 50 nm nanowire under cooling and warming conditions in at 5 T magnetic field. No thermal hysteresis and resistivity jumps are observed. Blue and red in (i) and (j) correspond to cooling and warming processes, respectively.

  • Figure 3

    (Color online) Resistivity vs. external magnetic field behavior at different temperatures. (a)-(d) correspond to temperatures of 160, 110, 60, and 10 K. Black, red, blue, green, and purple correspond to different widths of nanowires, corresponding to 400, 300, 200, 100, and 50 nm, respectively.

  • Figure 4

    (Color online) Force microscopy measurements of selected nanowires under increasing magnetic field. (a) AFM image of the morphology of the selected nanowires (left to right: width=1 μm, 500 nm, 200 nm, and 100 nm). (b)-(h) MFM images of the four wires of differing widths in different applied magnetic fields. Red color refers to the FMM phase and blue color refers to the nonmagnetic phase.

  • Figure 5

    (Color online) Temperature-dependent magnetoresistance of differing-width nanowires. MR is defined as MR=(R0RH)/RH, where RH was measured at 9 T, compared with R0, measured at zero magnetic field.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1