logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 63 , Issue 3 : 234601(2020) https://doi.org/10.1007/s11433-019-1457-2

The recent progress of functionally graded CNT reinforced composites and structures

More info
  • ReceivedAug 14, 2019
  • AcceptedOct 10, 2019
  • PublishedNov 7, 2019
PACS numbers

Abstract

In the last decade, the functionally graded carbon nanotube reinforced composites (FG-CNTRCs) have attracted considerable interest due to their excellent mechanical properties, and the structures made of FG-CNTRCs have found broad potential applications in aerospace, civil and ocean engineering, automotive industry, and smart structures. Here we review the literature regarding the mechanical analysis of bulk CNTR nanocomposites and FG-CNTRC structures, aiming to provide a clear picture of the mechanical modeling and properties of FG-CNTRCs as well as their composite structures. The review is organized as follows: (1) a brief introduction to the functionally graded materials (FGM), CNTRCs and FG-CNTRCs; (2) a literature review of the mechanical modeling methodologies and properties of bulk CNTRCs; (3) a detailed discussion on the mechanical behaviors of FG-CNTRCs; and (4) conclusions together with a suggestion of future research trends.


Funded by

the National Natural Science Foundation of China(Grant,No.,11872245)

the Research Grants Council of the Hong Kong Special Administrative Region

China(Grant,Nos.,9042644,CityU,11205518)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 11872245) and the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant Nos. 9042644, CityU 11205518).


References

[1] H.-S. Shen, Functionally Graded Materials: Nonlinear Analysis of Plates and Shells (CRC Press, Boca Raton, 2009). Google Scholar

[2] S. Chakraverty, and K. K. Pradhan, Vibration of Functionally Graded Beams and Plates (Academic Press, London, 2016). Google Scholar

[3] Udupa G., Rao S. S., Gangadharan K. V.. Procedia Mater. Sci., 2014, 5: 1291 CrossRef Google Scholar

[4] Hirai T., Chen L.. Mater. Sci. Forum., 1999, 308-311: 509 CrossRef Google Scholar

[5] N. Zhang, T. Khan, H. Guo, S. Shi, W. Zhong, and W. Zhang, Adv. Mater. Sci. Eng. 2019, 1 (2019). Google Scholar

[6] Li Y., Wang Q., Wang S.. Compos. Part B-Eng., 2019, 160: 348 CrossRef Google Scholar

[7] Thostenson E. T., Ren Z., Chou T. W.. Compos. Sci. Tech., 2001, 61: 1899 CrossRef Google Scholar

[8] Wong E. W., Sheehan P. E., Lieber C. M.. Science, 1997, 277: 1971 CrossRef Google Scholar

[9] Coleman J.  N., Khan U., Gun’ko Y.  K.. Adv. Mater., 2006, 18: 689 CrossRef Google Scholar

[10] K. M. Liew, J. W. Yan, and L.-W. Zhang, Mechanical Behaviors of Carbon Nanotubes: Theoretical and Numerical Approaches (William Andrew, Amsterdam, 2016). Google Scholar

[11] Xu Z. P., Zheng Q. S.. Sci. China-Phys. Mech. Astron., 2018, 61: 074601 CrossRef ADS Google Scholar

[12] Collins P. G., Avouris P.. Sci. Am., 2000, 283: 62 CrossRef PubMed ADS Google Scholar

[13] Vijayaraghavan V., Dethan J. F. N., Gao L.. Sci. China-Phys. Mech. Astron., 2019, 62: 034611 CrossRef ADS Google Scholar

[14] Qian D., Dickey E. C., Andrews R., Rantell T.. Appl. Phys. Lett., 2000, 76: 2868 CrossRef ADS Google Scholar

[15] Liu T., Phang I. Y., Shen L., Chow S. Y., Zhang W. D.. Macromolecules, 2004, 37: 7214 CrossRef ADS Google Scholar

[16] Coleman J. N., Khan U., Blau W. J., Gun’ko Y. K.. Carbon, 2006, 44: 1624 CrossRef Google Scholar

[17] Liew K. M., Lei Z. X., Zhang L. W.. Compos. Struct., 2015, 120: 90 CrossRef Google Scholar

[18] Bakshi S. R., Lahiri D., Agarwal A.. Int. Mater. Rev., 2013, 55: 41 CrossRef Google Scholar

[19] Qian H., Greenhalgh E. S., Shaffer M. S. P., Bismarck A.. J. Mater. Chem., 2010, 20: 4751 CrossRef Google Scholar

[20] Ma P. C., Siddiqui N. A., Marom G., Kim J. K.. Compos. Part A-Appl. Sci. Manuf., 2010, 41: 1345 CrossRef Google Scholar

[21] Wen Q., Zhang R., Qian W., Wang Y., Tan P., Nie J., Wei F.. Chem. Mater., 2010, 22: 1294 CrossRef Google Scholar

[22] Zhang R., Zhang Y., Zhang Q., Xie H., Qian W., Wei F.. ACS Nano, 2013, 7: 6156 CrossRef PubMed Google Scholar

[23] Lv T., Yao Y., Li N., Chen T.. Angew. Chem. Int. Ed., 2016, 55: 9191 CrossRef PubMed Google Scholar

[24] Yasuda S., Furuya A., Uchibori Y., Kim J., Murakoshi K.. Adv. Funct. Mater., 2016, 26: 738 CrossRef Google Scholar

[25] Xie H., Zhang R., Zhang Y., Yin Z., Jian M., Wei F.. Carbon, 2016, 98: 157 CrossRef Google Scholar

[26] Kang L., Zhang S., Li Q., Zhang J.. J. Am. Chem. Soc., 2016, 138: 6727 CrossRef PubMed Google Scholar

[27] Ajayan P. M., Stephan O., Colliex C., Trauth D.. Science, 1994, 265: 1212 CrossRef PubMed ADS Google Scholar

[28] Goh G. L., Agarwala S., Yeong W. Y.. Adv. Mater. Interfaces, 2019, 6: 1801318 CrossRef Google Scholar

[29] Iakoubovskii K.. Open Phys., 2009, 7: 645 CrossRef ADS Google Scholar

[30] Beigmoradi R., Samimi A., Mohebbi-Kalhori D.. Beilstein J. Nanotechnol., 2018, 9: 415 CrossRef PubMed Google Scholar

[31] Kwon H., Bradbury C. R., Leparoux M.. Adv. Eng. Mater., 2011, 13: 325 CrossRef Google Scholar

[32] Shen H. S.. Compos. Struct., 2009, 91: 9 CrossRef Google Scholar

[33] Shen H. S.. Compos. Struct., 2011, 93: 2096 CrossRef Google Scholar

[34] Shen H. S., Xiang Y.. Comput. Methods Appl. Mech. Eng., 2012, 213-216: 196 CrossRef ADS Google Scholar

[35] Shen H. S., Zhang C. L.. Mater. Des., 2010, 31: 3403 CrossRef Google Scholar

[36] Shen H. S., Zhu Z. H.. Eur. J. Mech. A-Solids, 2012, 35: 10 CrossRef ADS Google Scholar

[37] Liew K. M., Lei Z. X., Yu J. L., Zhang L. W.. Comput. Methods Appl. Mech. Eng., 2014, 268: 1 CrossRef ADS Google Scholar

[38] Zhang L. W., Lei Z. X., Liew K. M., Yu J. L.. Comput. Methods Appl. Mech. Eng., 2014, 273: 1 CrossRef ADS Google Scholar

[39] Zhang L. W., Liew K. M.. Appl. Math. Comput., 2014, 246: 268 CrossRef Google Scholar

[40] Zhang L. W., Deng Y. J., Liew K. M., Cheng Y. M.. Comput. Math. Appl., 2014, 68: 1093 CrossRef Google Scholar

[41] Lei Z. X., Liew K. M., Yu J. L.. Compos. Struct., 2013, 98: 160 CrossRef Google Scholar

[42] Lei Z. X., Liew K. M., Yu J. L.. Comput. Methods Appl. Mech. Eng., 2013, 256: 189 CrossRef ADS Google Scholar

[43] Lei Z. X., Liew K. M., Yu J. L.. Compos. Struct., 2013, 106: 128 CrossRef Google Scholar

[44] Prasanna Sahoo B., Das D.. Mater. Today-Proc., 2018, 5: 20549 CrossRef Google Scholar

[45] Imtiaz S., Siddiq M., Kausar A., Muntha S. T., Ambreen J., Bibi I.. Chin. J. Polym. Sci., 2017, 36: 445 CrossRef Google Scholar

[46] Shahidi S., Moazzenchi B.. J. Textile Instit., 2018, 109: 1653 CrossRef Google Scholar

[47] Yadav M. D., Dasgupta K., Patwardhan A. W., Joshi J. B.. Ind. Eng. Chem. Res., 2017, 56: 12407 CrossRef Google Scholar

[48] Griebel M., Hamaekers J.. Comput. Methods Appl. Mech. Eng., 2004, 193: 1773 CrossRef ADS Google Scholar

[49] Frankland S., Harik V., Odegard G., Brenner D., Gates T.. Compos. Sci. Tech., 2003, 63: 1655 CrossRef Google Scholar

[50] Mahboob M., Islam M. Z.. Comput. Mater. Sci., 2013, 79: 223 CrossRef Google Scholar

[51] Yang S., Yu S., Cho M.. Carbon, 2013, 55: 133 CrossRef Google Scholar

[52] Lv Q., Wang Z., Chen S., Li C., Sun S., Hu S.. Int. J. Mech. Sci., 2017, 131-132: 527 CrossRef Google Scholar

[53] Sharma S., Chandra R., Kumar P., Kumar N.. Comput. Mater. Sci., 2014, 86: 1 CrossRef Google Scholar

[54] Grujicic M., Sun Y. P., Koudela K. L.. Appl. Surf. Sci., 2007, 253: 3009 CrossRef ADS Google Scholar

[55] Sharma K., Sen Kaushalyayan K., Shukla M.. Comput. Mater. Sci., 2015, 99: 232 CrossRef Google Scholar

[56] Xiong Q. L., Meguid S. A.. Eur. Polym. J., 2015, 69: 1 CrossRef Google Scholar

[57] Yuan Z., Lu Z., Chen M., Yang Z., Xie F.. Appl. Surf. Sci., 2015, 351: 1043 CrossRef Google Scholar

[58] Peng X., Meguid S. A.. Comput. Mater. Sci., 2017, 126: 204 CrossRef Google Scholar

[59] Choi B. K., Yoon G. H., Lee S.. Compos. Part B-Eng., 2016, 91: 119 CrossRef Google Scholar

[60] Xiang J., Xie L., Meguid S. A., Pang S., Yi J., Zhang Y., Liang R.. Comput. Mater. Sci., 2017, 128: 359 CrossRef Google Scholar

[61] J. Qu, and M. Cherkaoui, Fundamentals of Micromechanics of Solids (Wiley Hoboken, New York, 2006). Google Scholar

[62] Chen X. L., Liu Y. J.. Comput. Mater. Sci., 2004, 29: 1 CrossRef Google Scholar

[63] Han Y., Elliott J.. Comput. Mater. Sci., 2007, 39: 315 CrossRef Google Scholar

[64] Zhang L. W., Cui W. C., Liew K. M.. Int. J. Mech. Sci., 2015, 103: 9 CrossRef Google Scholar

[65] Zhang L. W., Lei Z. X., Liew K. M.. Compos. Part B-Eng., 2015, 75: 36 CrossRef Google Scholar

[66] Zhang L. W., Lei Z. X., Liew K. M.. Appl. Math. Comput., 2015, 256: 488 CrossRef Google Scholar

[67] Zhang L. W., Lei Z. X., Liew K. M.. Eng. Anal. Bound. Elem., 2015, 58: 7 CrossRef Google Scholar

[68] Zhang L. W., Lei Z. X., Liew K. M.. J. Vib. Control, 2017, 23: 1026 CrossRef Google Scholar

[69] Lin F., Xiang Y.. Appl. Mech. Mater., 2014, 553: 681 CrossRef Google Scholar

[70] Shi D. L., Feng X. Q., Huang Y. Y., Hwang K. C., Gao H.. J. Eng. Mater. Tech., 2004, 126: 250 CrossRef Google Scholar

[71] Formica G., Lacarbonara W., Alessi R.. J. Sound Vib., 2010, 329: 1875 CrossRef ADS Google Scholar

[72] García-Macías E., Rodriguez-Tembleque L., Castro-Triguero R., Sáez A.. Compos. Part B-Eng., 2017, 108: 243 CrossRef Google Scholar

[73] Barai P., Weng G. J.. Int. J. Plast., 2011, 27: 539 CrossRef Google Scholar

[74] Tornabene F., Fantuzzi N., Bacciocchi M., Viola E.. Compos. Part B-Eng., 2016, 89: 187 CrossRef Google Scholar

[75] Sharma S., Chandra R., Kumar P., Kumar N.. Acta Mech. Solid Sin., 2015, 28: 409 CrossRef Google Scholar

[76] Seidel G. D., Lagoudas D. C.. Mech. Mater., 2006, 38: 884 CrossRef Google Scholar

[77] Rafiee R.. Compos. Struct., 2013, 97: 304 CrossRef Google Scholar

[78] Jam J. E., Pourasghar A., Kamarian S., Maleki S.. Polym Compos, 2013, 34: 241 CrossRef Google Scholar

[79] Liu Y. J., Chen X. L.. Mech. Mater., 2003, 35: 69 CrossRef Google Scholar

[80] Golestanian H., Shojaie M.. Comput. Mater. Sci., 2010, 50: 731 CrossRef Google Scholar

[81] Fisher F. T., Bradshaw R. D., Brinson L. C.. Compos. Sci. Tech., 2003, 63: 1689 CrossRef Google Scholar

[82] Fisher F. T., Bradshaw R. D., Brinson L. C.. Appl. Phys. Lett., 2002, 80: 4647 CrossRef ADS Google Scholar

[83] Bradshaw R. D., Fisher F. T., Brinson L. C.. Compos. Sci. Tech., 2003, 63: 1705 CrossRef Google Scholar

[84] Paunikar S., Kumar S.. Comput. Mater. Sci., 2014, 95: 21 CrossRef Google Scholar

[85] Ray M. C., Kundalwal S. I.. Eur. J. Mech. A-Solids, 2014, 44: 41 CrossRef ADS Google Scholar

[86] Joshi U. A., Sharma S. C., Harsha S. P.. Compos. Part B-Eng., 2012, 43: 2063 CrossRef Google Scholar

[87] Tserpes K. I., Chanteli A.. Compos. Struct., 2013, 99: 366 CrossRef Google Scholar

[88] Guru K., Sharma T., Shukla K. K., Mishra S. B.. J. Nanomech. Micromech., 2016, 6: 04016004 CrossRef Google Scholar

[89] Esbati A. H., Irani S.. Aerosp. Sci. Tech., 2016, 55: 120 CrossRef Google Scholar

[90] Bhowmik K., Kumar P., Khutia N., Chowdhury A. R.. Mater. Today-Proc., 2018, 5: 20528 CrossRef Google Scholar

[91] Wang J. F., Liew K. M.. Compos. Struct., 2015, 124: 1 CrossRef Google Scholar

[92] Yazdchi K., Salehi M.. Compos. Part A-Appl. Sci. Manuf., 2011, 42: 1301 CrossRef Google Scholar

[93] Golestanian H., Gahruei M. H.. Mater. Sci. Tech., 2013, 29: 913 CrossRef Google Scholar

[94] Pan Z. Z., Huang R., Liu Z. S.. Polym. Compos., 2019, 40: 353 CrossRef Google Scholar

[95] Liu Y., Nishimura N., Otani Y.. Comput. Mater. Sci., 2005, 34: 173 CrossRef Google Scholar

[96] Hu Z., Arefin M. R. H., Yan X., Fan Q. H.. Compos. Part B-Eng., 2014, 56: 100 CrossRef Google Scholar

[97] Ansari R., Hassanzadeh-Aghdam M. K.. Compos. Part B-Eng., 2016, 90: 512 CrossRef Google Scholar

[98] Hassanzadeh-Aghdam M. K., Mahmoodi M. J., Ansari R.. Probab. Eng. Mech., 2018, 53: 39 CrossRef Google Scholar

[99] Matos M. A. S., Tagarielli V. L., Baiz-Villafranca P. M., Pinho S. T.. J. Mech. Phys. Solids, 2018, 114: 84 CrossRef ADS Google Scholar

[100] Liew K. M., Pan Z. Z., Zhang L. W.. Compos. Struct., 2019, 216: 240 CrossRef Google Scholar

[101] Gao X. L., Li K.. Int. J. Solids Struct., 2005, 42: 1649 CrossRef Google Scholar

[102] Tsai J. L., Tzeng S. H., Chiu Y. T.. Compos. Part B-Eng., 2010, 41: 106 CrossRef Google Scholar

[103] Liu A., Wang K. W., Bakis C. E.. Compos. Part A-Appl. Sci. Manuf., 2011, 42: 1748 CrossRef Google Scholar

[104] Yang S., Yu S., Kyoung W., Han D. S., Cho M.. Polymer, 2012, 53: 623 CrossRef Google Scholar

[105] Alian A. R., Kundalwal S. I., Meguid S. A.. Polymer, 2015, 70: 149 CrossRef Google Scholar

[106] Choi H. K., Jung H., Oh Y., Hong H., Yu J., Shin E. S.. Compos. Sci. Tech., 2018, 168: 145 CrossRef Google Scholar

[107] Luo D., Wang W. X., Takao Y.. Compos. Sci. Tech., 2007, 67: 2947 CrossRef Google Scholar

[108] Odegard G., Gates T., Wise K., Park C., Siochi E.. Compos. Sci. Tech., 2003, 63: 1671 CrossRef Google Scholar

[109] Ayatollahi M. R., Shadlou S., Shokrieh M. M.. Compos. Struct., 2011, 93: 2250 CrossRef Google Scholar

[110] Savvas D. N., Papadopoulos V., Papadrakakis M.. Int. J. Solids Struct., 2012, 49: 3823 CrossRef Google Scholar

[111] García-Macías E., Guzmán C. F., Saavedra Flores E. I., Castro-Triguero R.. Compos. Part B-Eng., 2019, 159: 114 CrossRef Google Scholar

[112] Chandra Y., Scarpa F., Adhikari S., Zhang J., Saavedra Flores E. I., Peng H. X.. Compos. Part B-Eng., 2016, 102: 1 CrossRef Google Scholar

[113] Mohammadi S., Yas M. H.. J. Reinf. Plast. Compos., 2016, 35: 1477 CrossRef Google Scholar

[114] Grabowski K., Zbyrad P., Uhl T., Staszewski W. J., Packo P.. Comput. Mater. Sci., 2017, 135: 169 CrossRef Google Scholar

[115] Yousefi E., Sheidaei A., Mahdavi M., Baniassadi M., Baghani M., Faraji G.. Compos. Sci. Tech., 2017, 153: 222 CrossRef Google Scholar

[116] Moon J., Shin H., Baek K., Choi J., Cho M.. Compos. Sci. Tech., 2018, 166: 27 CrossRef Google Scholar

[117] Papadopoulos V., Impraimakis M.. Compos. Struct., 2017, 182: 251 CrossRef Google Scholar

[118] Wernik J. M., Meguid S. A.. Int. J. Solids Struct., 2014, 51: 2575 CrossRef Google Scholar

[119] Li C., Chou T. W.. Compos. Sci. Tech., 2006, 66: 2409 CrossRef Google Scholar

[120] Montazeri A., Naghdabadi R.. J. Appl. Polym. Sci., 2010, 117: 361 CrossRef Google Scholar

[121] Gupta A. K., Harsha S. P.. Compos. Part B-Eng., 2016, 95: 172 CrossRef Google Scholar

[122] Palacios J. A., Ganesan R.. Compos. Part B-Eng., 2019, 166: 497 CrossRef Google Scholar

[123] Palacios J. A., Ganesan R.. J. Polym. Res., 2019, 26: 124 CrossRef Google Scholar

[124] Iacobellis V., Radhi A., Behdinan K.. Compos. Struct., 2018, 202: 406 CrossRef Google Scholar

[125] Zhang L. W., Liew K. M.. Comput. Methods Appl. Mech. Eng., 2015, 295: 219 CrossRef ADS Google Scholar

[126] Ansari R., Pourashraf T., Gholami R., Shahabodini A.. Compos. Part B-Eng., 2016, 90: 267 CrossRef Google Scholar

[127] Kiani Y.. Thin-Walled Struct., 2017, 111: 48 CrossRef Google Scholar

[128] Kumar P., Srinivas J.. Multi Modelg Mat Struct, 2017, 13: 590 CrossRef Google Scholar

[129] Alibeigloo A., Emtehani A.. Meccanica, 2015, 50: 61 CrossRef Google Scholar

[130] Alibeigloo A., Zanoosi A. A. P.. Compos. Struct., 2017, 173: 268 CrossRef Google Scholar

[131] Ardestani M. M., Zhang L. W., Liew K. M.. Comput. Methods Appl. Mech. Eng., 2017, 317: 341 CrossRef ADS Google Scholar

[132] Thanh C. L., Phung-Van P., Thai C. H., Nguyen-Xuan H., Abdel Wahab M.. Compos. Struct., 2018, 184: 633 CrossRef Google Scholar

[133] Mehar K., Panda S. K.. Int. J. Comput. Methods, 2017, 14: 1750019 CrossRef Google Scholar

[134] Mehar K., Panda S. K.. Compos. Struct., 2017, 161: 287 CrossRef Google Scholar

[135] Lei Z. X., Zhang L. W., Liew K. M.. Compos. Part B-Eng., 2016, 84: 211 CrossRef Google Scholar

[136] Tornabene F., Fantuzzi N., Bacciocchi M.. Compos. Part B-Eng., 2017, 115: 449 CrossRef Google Scholar

[137] Dai T., Yang Y., Dai H. L., Tang H., Lin Z. Y.. Compos. Struct., 2019, 215: 198 CrossRef Google Scholar

[138] M. Mirzaalian, F. Aghadavoudi, and R. Moradi-Dastjerdi, J. Solid Mech. 11, 26 (2019). Google Scholar

[139] Lei Z. X., Yin B. B., Liew K. M.. Compos. Struct., 2018, 184: 314 CrossRef Google Scholar

[140] Zhang L. W., Liew K. M.. Compos. Struct., 2015, 132: 974 CrossRef Google Scholar

[141] Zhang L. W., Song Z. G., Liew K. M.. Compos. Struct., 2015, 128: 165 CrossRef Google Scholar

[142] Zhang L. W., Liew K. M., Jiang Z.. Compos. Part B-Eng., 2016, 95: 18 CrossRef Google Scholar

[143] Zhang L. W., Liu W. H., Liew K. M.. Int. J. Non-Linear Mech., 2016, 86: 122 CrossRef ADS Google Scholar

[144] Shen H. S., Xiang Y.. Compos. Struct., 2015, 131: 939 CrossRef Google Scholar

[145] Keleshteri M. M., Asadi H., Aghdam M. M.. Thin-Walled Struct., 2019, 135: 453 CrossRef Google Scholar

[146] Pan Z. Z., Zhang L. W., Liew K. M.. Comput. Methods Appl. Mech. Eng., 2019, 355: 753 CrossRef ADS Google Scholar

[147] Ansari R., Torabi J., Shojaei M. F.. Eur. J. Mech. A-Solids, 2016, 60: 166 CrossRef ADS Google Scholar

[148] Alibeigloo A., Jafarian H.. Int. J. Appl. Mech., 2016, 08: 1650033 CrossRef ADS Google Scholar

[149] Ansari R., Shahabodini A., Shojaei M. F.. Compos. Struct., 2016, 139: 167 CrossRef Google Scholar

[150] Lei Z. X., Zhang L. W., Liew K. M.. Compos. Struct., 2015, 127: 245 CrossRef Google Scholar

[151] Kiani Y.. Sci. Eng. Composite Mater., 2018, 25: 41 CrossRef Google Scholar

[152] Kiani Y., Dimitri R., Tornabene F.. Eng. Struct., 2018, 172: 472 CrossRef Google Scholar

[153] Zhao J., Choe K., Shuai C., Wang A., Wang Q.. Compos. Part B-Eng., 2019, 160: 225 CrossRef Google Scholar

[154] Zhang L. W.. Compos. Struct., 2017, 160: 824 CrossRef Google Scholar

[155] Zhong R., Wang Q., Tang J., Shuai C., Qin B.. Compos. Struct., 2018, 194: 49 CrossRef Google Scholar

[156] Ansari R., Torabi J., Hassani R.. Eng. Struct., 2019, 181: 653 CrossRef Google Scholar

[157] Vo-Duy T., Ho-Huu V., Nguyen-Thoi T.. Front. Struct. Civ. Eng., 2019, 13: 324 CrossRef Google Scholar

[158] Qin Z., Pang X., Safaei B., Chu F.. Compos. Struct., 2019, 220: 847 CrossRef Google Scholar

[159] Heshmati M., Yas M. H., Daneshmand F.. Compos. Struct., 2015, 125: 434 CrossRef Google Scholar

[160] Kamarian S., Shakeri M., Yas M., Bodaghi M., Pourasghar A.. Jnl Sandwich Struct. Mater., 2015, 17: 632 CrossRef Google Scholar

[161] Safaei B., Moradi-Dastjerdi R., Chu F.. Compos. Struct., 2018, 192: 28 CrossRef Google Scholar

[162] Mirzaei M., Kiani Y.. Acta Mech, 2016, 227: 1869 CrossRef Google Scholar

[163] Fan J., Huang J.. Shock Vib., 2018, 2018: 1 CrossRef Google Scholar

[164] Keleshteri M. M., Asadi H., Wang Q.. Thin-Walled Struct., 2017, 120: 203 CrossRef Google Scholar

[165] Shen H. S., Wang H.. Aerosp. Sci. Tech., 2017, 64: 63 CrossRef Google Scholar

[166] Mehar K., Panda S. K., Bui T. Q., Mahapatra T. R.. J. Thermal Stresses, 2017, 40: 899 CrossRef Google Scholar

[167] Fan Y., Wang H.. Compos. Struct., 2015, 124: 35 CrossRef Google Scholar

[168] Lei Z. X., Zhang L. W., Liew K. M.. Appl. Math. Model., 2018, 55: 33 CrossRef Google Scholar

[169] Ansari R., Hasrati E., Faghih Shojaei M., Gholami R., Shahabodini A.. Physica E, 2015, 69: 294 CrossRef ADS Google Scholar

[170] Zhang L. W., Xiao L. N., Zou G. L., Liew K. M.. Compos. Struct., 2016, 148: 144 CrossRef Google Scholar

[171] Safaei B., Moradi-Dastjerdi R., Qin Z., Chu F.. Compos. Part B-Eng., 2019, 161: 44 CrossRef Google Scholar

[172] Kiani Y.. Thin-Walled Struct., 2017, 119: 47 CrossRef Google Scholar

[173] Song Z. G., Zhang L. W., Liew K. M.. Compos. Part B-Eng., 2016, 99: 154 CrossRef Google Scholar

[174] Fallah M., Daneshmehr A. R., Zarei H., Bisadi H., Minak G.. Compos. Struct., 2018, 187: 554 CrossRef Google Scholar

[175] Jam J. E., Kiani Y.. Compos. Struct., 2015, 132: 35 CrossRef Google Scholar

[176] Selim B. A., Zhang L. W., Liew K. M.. Compos. Struct., 2017, 170: 228 CrossRef Google Scholar

[177] Zarei H., Fallah M., Bisadi H., Daneshmehr A. R., Minak G.. Compos. Part B-Eng., 2017, 113: 206 CrossRef Google Scholar

[178] Zhang L. W., Song Z. G., Qiao P., Liew K. M.. Comput. Methods Appl. Mech. Eng., 2017, 313: 889 CrossRef ADS Google Scholar

[179] Selim B. A., Zhang L. W., Liew K. M.. Compos. Struct., 2017, 163: 350 CrossRef Google Scholar

[180] Nguyen-Quang K., Vo-Duy T., Dang-Trung H., Nguyen-Thoi T.. Comput. Methods Appl. Mech. Eng., 2018, 332: 25 CrossRef ADS Google Scholar

[181] Song Z. G., Zhang L. W., Liew K. M.. Int. J. Mech. Sci., 2016, 105: 90 CrossRef Google Scholar

[182] Song Z. G., Zhang L. W., Liew K. M.. Compos. Struct., 2016, 158: 92 CrossRef Google Scholar

[183] Lei Z. X., Zhang L. W., Liew K. M.. Appl. Math. Computation, 2015, 266: 773 CrossRef Google Scholar

[184] Ansari R., Torabi J., Shojaei M. F., Hasrati E.. Compos. Struct., 2016, 157: 398 CrossRef Google Scholar

[185] Jalali S. K., Heshmati M.. Thin-Walled Struct., 2016, 100: 14 CrossRef Google Scholar

[186] Lei Z. X., Zhang L. W., Liew K. M.. Compos. Struct., 2016, 152: 62 CrossRef Google Scholar

[187] Kiani Y.. Compos. Part B-Eng., 2016, 105: 176 CrossRef Google Scholar

[188] Ansari R., Torabi J., Hassani R.. Comput. Math. Appl., 2018, 75: 486 CrossRef Google Scholar

[189] Shams S., Soltani B.. Polym. Compos., 2017, 38: E531 CrossRef Google Scholar

[190] Sofiyev A. H., Turkaslan B. E., Bayramov R. P., Salamci M. U.. Thin-Walled Struct., 2019, 144: 106338 CrossRef Google Scholar

[191] Farzam A., Hassani B.. Compos. Struct., 2018, 206: 774 CrossRef Google Scholar

[192] Torabi J., Ansari R., Hassani R.. Eur. J. Mech. A-Solids, 2019, 73: 144 CrossRef ADS Google Scholar

[193] Mirzaei M.. J. Thermal Stresses, 2018, 41: 920 CrossRef Google Scholar

[194] J. Torabi, and R. Ansari, Struct. Eng. Mech. 68, 313 (2018). Google Scholar

[195] Hieu P. T., Tung H. V.. J. Thermoplastic Compos. Mater., 2019, 266: 089270571985361 CrossRef Google Scholar

[196] Nejati M., Dimitri R., Tornabene F., Yas M. H.. Appl. Sci., 2017, 7: 1223 CrossRef Google Scholar

[197] Song Z. G., Zhang L. W., Liew K. M.. Compos. Struct., 2016, 141: 79 CrossRef Google Scholar

[198] Swain P. K., Adhikari B., Maiti D. K., Singh B. N.. Compos. Struct., 2019, 222: 110916 CrossRef Google Scholar

[199] Asadi H., Beheshti A. R.. Acta Mech, 2018, 229: 2413 CrossRef Google Scholar

[200] Zhang L. W., Song Z. G., Liew K. M.. Comput. Methods Appl. Mech. Eng., 2016, 300: 427 CrossRef ADS Google Scholar

[201] Ninh D. G., Tien N. D.. Aerosp. Sci. Tech., 2019, 92: 501 CrossRef Google Scholar

[202] Mehri M., Asadi H., Kouchakzadeh M. A.. Comput. Methods Appl. Mech. Eng., 2017, 318: 957 CrossRef ADS Google Scholar

[203] Mehri M., Asadi H., Wang Q.. Compos. Struct., 2016, 153: 938 CrossRef Google Scholar

[204] Zhang L. W., Liew K. M.. Compos. Struct., 2016, 138: 40 CrossRef Google Scholar

[205] García-Macías E., Rodríguez-Tembleque L., Castro-Triguero R., Sáez A.. Compos. Part B-Eng., 2017, 128: 208 CrossRef Google Scholar

[206] Shen H. S., Xiang Y.. Int. J. Mech. Sci., 2016, 107: 225 CrossRef Google Scholar

[207] Kiani Y.. Compos. Struct., 2017, 159: 299 CrossRef Google Scholar

[208] Kiani Y.. J. Thermal Stresses, 2016, 39: 1098 CrossRef Google Scholar

[209] Kiani Y.. J. Thermal Stresses, 2018, 41: 866 CrossRef Google Scholar

[210] Long V. T., van Tung H.. J. Thermoplast. Compos. Mater., : doi: https://doi.org/10.1177/0892705719828789. CrossRef Google Scholar

[211] Hieu P. T., van Tung H.. J. Thermoplastic Composite Mater., 2019, 32: 1319 CrossRef Google Scholar

[212] Keleshteri M. M., Asadi H., Wang Q.. Comput. Methods Appl. Mech. Eng., 2017, 325: 689 CrossRef ADS Google Scholar

[213] Ninh D. G.. Thin-Walled Struct., 2018, 123: 528 CrossRef Google Scholar

[214] Wu H. L., Yang J., Kitipornchai S.. Thin-Walled Struct., 2016, 108: 225 CrossRef Google Scholar

[215] Fan Y., Wang H.. Compos. Struct., 2016, 157: 386 CrossRef Google Scholar

  • Figure 1

    (Color online) The number of yearly publications on the FG-CNTRC beam, plate and shell. Source: Scopus®, Elsevier B.V. [Dated assessed: July 2019].

  • Figure 2

    Front and side view of unit cell of system (a) short and (b) continuous single-walled CNT reinforced polyethylene composites. (a), (b) are reprinted from ref. [48] with permission from Elsevier.

  • Figure 3

    (Color online) (a) MD models and (b) stress-strain curves of pure Al and Al matrix composites reinforced by long and short CNTs, respectively; (c) the fracture process of continuous CNT/Al composite; (d) the fracture process of short CNT/Al composite. (a)-(d) are reprinted from ref. [60] with permission from Elsevier.

  • Figure 4

    (Color online) 3D computational RVE models containing (a) one straight CNT; (b) one straight CNT and considering the interface effect; (c) one waved CNT. (a) is reprinted from ref. [79], (b) is modified after ref. [80], and (c) is reprinted from ref. [81] with permission from Elsevier.

  • Figure 5

    (Color online) (a) Cubic geometrical UC generated by Monte Carlo method; (b) square RVE model with three phases; (c) a UC containing 10% of short CNT RVE elements; (d) random CNTs orientation represented by different colors. (a)-(d) are modified after ref. [96] with permission from Elsevier.

  • Figure 6

    (Color online) (a) schematic of the generation of a CNT; (b) an RVE model containing multiple randomly distributed CNTs. (a), (b) are reprinted from ref. [99] with permission from Elsevier.

  • Figure 7

    (Color online) (a) CNT was equivalented as a solid fiber according to the results obtained by using molecular structural mechanics based on the atomistic structure; (b) schematic of shear-lag model. (a), (b) are modified after ref. [101] with permission from Elsevier.

  • Figure 8

    (Color online) Schematic of the multiscale model: (a) axial deformation applied in the CNT atomistic structures and the equivalent solid cylinder; (b) three-phase micromechanical model; (c) CNTs/polyimide molecular structure for determining the material properties of the effective interphase. (a)-(c) are modified after ref. [102] with permission from Elsevier.

  • Figure 9

    (Color online) Schematic diagram of the multiscale analysis procedure of CNT reinforced polymer composites: (a) an FE atomistic-based RVE was used to model the CNT/polymer interaction studied at the nano-scale; (b) an representative fiber was generated at the microscale; (c) the macroscopic properties of the nanocomposite are computed using a computational unit cell. (a)-(c) are reprinted from ref. [111] with permission from Elsevier.

  • Figure 10

    (Color online) Illustrations of truss rods connecting nodes in finite elements with carbon atoms: (a) on the nanotube lateral surface and (b) on the nanotube end cap region. (a), (b) are reprinted from ref. [119] with permission from Elsevier.

  • Figure 11

    (Color online) (a) Domain decomposition of the bridging cell concurrent multiscale model: continuum (ΩC), bridging (ΩB) and atomistic (ΩA) domains; (b) computational model of (5,5) armchair CNT/Al nanocomposites. (a), (b) are modified after ref. [124] with permission from Elsevier.

  • Figure 12

    (Color online) The configurations of CNT distribution (a) UD, (b) FG-Λ, (c) FG-V, (d) FG-O, (e) FG-X through the thickness and (f) the coordinate of CNTRC layer.

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号