SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 63, Issue 4: 244711(2020) https://doi.org/10.1007/s11433-019-1458-4

Non-premixed turbulent combustion modeling based on the filtered turbulent flamelet equation

More info
  • ReceivedSep 2, 2019
  • AcceptedOct 10, 2019
  • PublishedNov 25, 2019
PACS numbers


In turbulent combustion simulations, the flow structure at the unresolved scale level needs to be reasonably modeled. Following the idea of turbulent flamelet equation for the non-premixed flame case, which was derived based on the filtered governing equations (L. Wang, Combust. Flame 175, 259 (2017)), the scalar dissipation term for tabulation can be directly computed from the resolved flowing quantities, instead of solving species transport equations. Therefore, the challenging source term closure for the scalar dissipation or any assumed probability density functions can be avoided; meanwhile the chemical sources are closed by scaling relations. The general principles are discussed in the context of large eddy simulation with case validation. The new model predictions of the bluff-body flame show sufficiently improved results, compared with these from the classic progress-variable approach.


This work was supported by the National Natural Science Foundation of China (Grant No. 11572330). LiPo Wang thanks the support from the Engineering Research Center of Gas Turbine and Civil Aero Engine, Ministry of Education; Jian Zhang thanks the support from International Clean Energy Talent Program by China Scholarship Council (Grant No. 201904100044) and Open founding of National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics (Grant No. 6142702180307).


[1] N. Peters, Turbulent Combustion (Cambridge University Press, England, 2000), p. 212. Google Scholar

[2] Pierce C. D., Moin P.. J. Fluid Mech., 1999, 504: 73-97 CrossRef ADS Google Scholar

[3] Klimenko A. Y., Bilger R. W.. Prog. Energy Combust. Sci., 1999, 25: 595-687 CrossRef Google Scholar

[4] Pope S. B.. Prog. Energy Combust. Sci., 1985, 11: 119-192 CrossRef Google Scholar

[5] Eswaran V., Pope S. B.. Phys. Fluids, 1988, 31: 506-520 CrossRef ADS Google Scholar

[6] Balarac G., Pitsch H., Raman V.. Phys. Fluids, 2008, 20: 035114 CrossRef ADS Google Scholar

[7] Balarac G., Pitsch H., Raman V.. Phys. Fluids, 2008, 20: 091701 CrossRef ADS Google Scholar

[8] Cook A. W., Riley J. J.. Phys. Fluids, 1994, 6: 2868-2870 CrossRef ADS Google Scholar

[9] Kaul C. M., Raman V., Balarac G., Pitsch H.. Phys. Fluids, 2009, 21: 055102 CrossRef ADS Google Scholar

[10] Kaul C. M., Raman V.. Phys. Fluids, 2011, 23: 035102 CrossRef ADS Google Scholar

[11] Pierce C. D., Moin P.. Phys. Fluids, 1998, 10: 3041-3044 CrossRef ADS Google Scholar

[12] Girimaji S. S., Zhou Y.. Phys. Fluids, 1996, 8: 1224-1236 CrossRef ADS Google Scholar

[13] Veynante D., Knikker R.. J. Turbul., 2006, 7: N35 CrossRef Google Scholar

[14] Cook A. W., Riley J. J., Kosály G.. Combust. Flame, 1997, 109: 332-341 CrossRef Google Scholar

[15] Ihme M., See Y. C.. Combust. Flame, 2010, 157: 1850-1862 CrossRef Google Scholar

[16] Ihme M., Zhang J., He G., Dally B.. Flow Turbulence Combust, 2012, 89: 449-464 CrossRef Google Scholar

[17] Ihme M., Pitsch H.. Combust. Flame, 2008, 155: 90-107 CrossRef Google Scholar

[18] Chen Y., Ihme M.. Combust. Flame, 2013, 160: 2896-2910 CrossRef Google Scholar

[19] See Y. C., Ihme M.. Proc. Combust. Institute, 2015, 35: 1225-1234 CrossRef Google Scholar

[20] Wang L.. Combust. Flame, 2017, 175: 259-269 CrossRef Google Scholar

[21] Class A. G., Matkowsky B. J., Klimenko A. Y.. J. Fluid Mech., 2003, 491: 11-49 CrossRef ADS Google Scholar

[22] Dally B. B., Masri A. R., Barlow R. S., Fiechtner G. J.. Combust. Flame, 1998, 114: 119-148 CrossRef Google Scholar

[23] Kempf A., Lindstedt R. P., Janicka J.. Combust. Flame, 2006, 144: 170-189 CrossRef Google Scholar

[24] T. Yang, and J. Zhang, in Proceedings of the ASME Power conference Joint with ICOPE-17 (ASME, Charlotte, 2017). Google Scholar

[25] Jones W. P., Lindstedt R. P.. Combust. Flame, 1988, 73: 233-249 CrossRef Google Scholar

[26] Wang L., Liu Z., Chen S., Zheng C.. Combust. Sci. Tech., 2012, 184: 259-276 CrossRef Google Scholar

[27] Kim J. P., Schnell U., Scheffknecht G.. Combust. Sci. Tech., 2008, 180: 565-592 CrossRef Google Scholar

[28] Y. Guo, Filtered Turbulent Flamelet Model for Turbulent Combustion Simulation, Dissertation for Master's Degree (Shanghai Jiao Tong University, Shanghai, 2019), pp. 25-34. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号