logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 62, Issue 5: 959506(2019) https://doi.org/10.1007/s11433-019-9383-y

Status and perspectives of the CRAFTS extra-galactic HI survey

More info
  • ReceivedJan 28, 2019
  • AcceptedMar 4, 2019
  • PublishedMar 21, 2019
PACS numbers

Abstract

The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is expected to complete its commissioning in 2019. FAST will soon begin the Commensal Radio Astronomy FasT Survey (CRAFTS), a novel and unprecedented commensal drift scan survey of the entire sky visible from FAST. The goal of CRAFTS is to cover more than 20000 deg$^{2}$ and reach redshift up to about 0.35. We provide empirical measurements of the beam size and sensitivity of FAST across the 1.05 to 1.45 GHz frequency range of the FAST L-band array of 19-beams (FLAN). Using a simulated HI-galaxy catalogue based on the HI Mass Function (HIMF), we estimate the number of galaxies that CRAFTS may detect. At redshifts below 0.35, over $6\,~\times~\,~10^{5}$ HI galaxies may be detected. Below the redshift of 0.07, the CRAFTS HIMF will be complete above a mass threshold of $10^{9.5}M_{\odot}$. FAST will be able to investigate the environmental and redshift dependence of the HIMF to an unprecedented depth, shedding light onto the missing baryon and missing satellite problems.


Acknowledgment

This work was supported by the National Key R$\&$D Program of China (Grant Nos. 2017YFA0402600, and 2016YFA0400702), the National Natural Science Foundation of China (Grant Nos. 11690024, 11725313, 11590783, and 11803051), the International Partnership Program of Chinese Academy of Sciences (Grant No. 114A11KYSB20160008), the CAS “Light of West China” Program, and the Young Researcher Grant of National Astronomical Observatories, Chinese Academy of Sciences. The author would like to thank helpful discussion with Michael G. Jones.


References

[1] M. S. Roberts, Galaxies and the Universe, edited by M. Sandage, and J. Kristan (University of Chicago Press, Chicago, 1975), p. 309. Google Scholar

[2] Barnes D. G., Staveley-Smith L., de Blok W. J. G., Oosterloo T., Stewart I. M., Wright A. E., Banks G. D., Bhathal R., Boyce P. J., Calabretta M. R., Disney M. J., Drinkwater M. J., Ekers R. D., Freeman K. C., Gibson B. K., Green A. J., Haynes R. F., Te Lintel Hekkert P., Henning P. A., Jerjen H., Juraszek S., Kesteven M. J., Kilborn V. A., Knezek P. M., Koribalski B., Kraan-Korteweg R. C., Malin D. F., Marquarding M., Minchin R. F., Mould J. R., Price R. M., Putman M. E., Ryder S. D., Sadler E. M., Schroder A., Stootman F., Webster R. L., Wilson W. E., Ye T.. Mon. Not. R. Astron. Soc., 2001, 322: 486-498 CrossRef ADS Google Scholar

[3] Meyer M. J., Zwaan M. A., Webster R. L., Staveley-Smith L., Ryan-Weber E., Drinkwater M. J., Barnes D. G., Howlett M., Kilborn V. A., Stevens J., Waugh M., Pierce M. J., Bhathal R., de Blok W. J. G., Disney M. J., Ekers R. D., Freeman K. C., Garcia D. A., Gibson B. K., Harnett J., Henning P. A., Jerjen H., Kesteven M. J., Knezek P. M., Koribalski B. S., Mader S., Marquarding M., Minchin R. F., O'Brien J., Oosterloo T., Price R. M., Putman M. E., Ryder S. D., Sadler E. M., Stewart I. M., Stootman F., Wright A. E.. Mon. Not. R. Astron. Soc., 2004, 350: 1195-1209 CrossRef ADS Google Scholar

[4] Giovanelli R., Haynes M. P., Kent B. R., Perillat P., Saintonge A., Brosch N., Catinella B., Hoffman G. L., Stierwalt S., Spekkens K., Lerner M. S., Masters K. L., Momjian E., Rosenberg J. L., Springob C. M., Boselli A., Charmandaris V., Darling J. K., Davies J., Lambas D. G., Gavazzi G., Giovanardi C., Hardy E., Hunt L. K., Iovino A., Karachentsev I. D., Karachentseva V. E., Koopmann R. A., Marinoni C., Minchin R., Muller E., Putman M., Pantoja C., Salzer J. J., Scodeggio M., Skillman E., Solanes J. M., Valotto C., van Driel W., van Zee L.. AJ, 2005, 130: 2598-2612 CrossRef ADS Google Scholar

[5] Haynes M. P., Giovanelli R., Martin A. M., Hess K. M., Saintonge A., Adams E. A. K., Hallenbeck G., Hoffman G. L., Huang S., Kent B. R., Koopmann R. A., Papastergis E., Stierwalt S., Balonek T. J., Craig D. W., Higdon S. J. U., Kornreich D. A., Miller J. R., O'Donoghue A. A., Olowin R. P., Rosenberg J. L., Spekkens K., Troischt P., Wilcots E. M.. Astron. J., 2011, 142: 170 CrossRef ADS arXiv Google Scholar

[6] Giovanelli R., Haynes M. P.. Astron Astrophys Rev, 2016, 24: 1 CrossRef ADS arXiv Google Scholar

[7] Haynes M. P., Giovanelli R., Kent B. R., Adams E. A. K., Balonek T. J., Craig D. W., Fertig D., Finn R., Giovanardi C., Hallenbeck G., Hess K. M., Hoffman G. L., Huang S., Jones M. G., Koopmann R. A., Kornreich D. A., Leisman L., Miller J., Moorman C., O'Connor J., O'Donoghue A., Papastergis E., Troischt P., Stark D., Xiao L.. Astrophys. J., 2018, 861: 49 CrossRef ADS arXiv Google Scholar

[8] Briggs F. H.. Astron. J., 1990, 100: 999-1005 CrossRef ADS Google Scholar

[9] Schechter P.. Astrophys. J., 1976, 203: 297-306 CrossRef ADS Google Scholar

[10] Klypin A., Kravtsov A. V., Valenzuela O., Prada F.. Astrophys. J., 1999, 522: 82-92 CrossRef ADS Google Scholar

[11] Martin A. M., Papastergis E., Giovanelli R., Haynes M. P., Springob C. M., Stierwalt S.. Astrophys. J., 2010, 723: 1359-1374 CrossRef ADS arXiv Google Scholar

[12] Storrie?\Lombardi L. J., Wolfe A. M.. Astrophys. J., 2000, 543: 552-576 CrossRef ADS Google Scholar

[13] Péroux C., McMahon R. G., Storrie-Lombardi L. J., Irwin M. J.. Mon. Not. R. Astron. Soc., 2003, 346: 1103-1115 CrossRef ADS Google Scholar

[14] Zwaan M. A., Meyer M. J., Staveley-Smith L., Webster R. L.. Mon. Not. R. Astron. Soc.-Lett., 2005, 359: L30-L34 CrossRef ADS Google Scholar

[15] Martin A. M., Papastergis E., Giovanelli R., Haynes M. P., Springob C. M., Stierwalt S.. Astrophys. J., 2010, 723: 1359-1374 CrossRef ADS arXiv Google Scholar

[16] Jones M. G., Haynes M. P., Giovanelli R., Moorman C.. Mon. Not. R. Astron. Soc., 2018, 477: 2-17 CrossRef ADS arXiv Google Scholar

[17] Obreschkow D., Croton D., De Lucia G., Khochfar S., Rawlings S.. Astrophys. J., 2009, 698: 1467-1484 CrossRef ADS arXiv Google Scholar

[18] Duffy A. R., Kay S. T., Battye R. A., Booth C. M., Dalla Vecchia C., Schaye J.. Mon. Not. R. Astron. Soc., 2012, 420: 2799-no CrossRef ADS arXiv Google Scholar

[19] Moorman C. M., Vogeley M. S., Hoyle F., Pan D. C., Haynes M. P., Giovanelli R.. Mon. Not. R. Astron. Soc., 2014, 444: 3559-3570 CrossRef ADS arXiv Google Scholar

[20] Jones M. G., Papastergis E., Haynes M. P., Giovanelli R.. Mon. Not. R. Astron. Soc., 2016, 457: 4393-4405 CrossRef ADS arXiv Google Scholar

[21] Duffy A. R., Battye R. A., Davies R. D., Moss A., Wilkinson P. N.. Mon. Not. R. Astron. Soc., 2007, 383: 150-160 CrossRef ADS arXiv Google Scholar

[22] Duffy A. R., Meyer M. J., Staveley-Smith L., Bernyk M., Croton D. J., Koribalski B. S., Gerstmann D., Westerlund S.. Mon. Not. R. Astron. Soc., 2012, 426: 3385-3402 CrossRef ADS arXiv Google Scholar

[23] Nan R.. SCI CHINA SER G, 2006, 49: 129-148 CrossRef ADS Google Scholar

[24] Nan R., Li D., Jin C., Wang Q., Zhu L., Zhu W., Zhang H., Yue Y., Qian L.. Int. J. Mod. Phys. D, 2011, 20: 989-1024 CrossRef ADS arXiv Google Scholar

[25] Li D., Wang P., Qian L., Krco M., Dunning A., Jiang P., Yue Y., Jin C., Zhu Y., Pan Z., Nan R.. IEEE Microwave, 2018, 19: 112-119 CrossRef ADS arXiv Google Scholar

[26] P. Jiang, Y. L. Yue, H. Q. Gan, R. Yao, H. Li, G. F. Pan, J. H. Sun, D. J. Yu, H. F. Liu, N. Y. Tang, L. Qian, J. G. Lu, J. Yan, B. Peng, S. X. Zhang, Q. M. Wang, Q. Li, D. Li, and FAST Collaboration, Commissioning Progress of the FAST, Sci. China-Phys. Mech. Astron. 62, 959502 (2019). Google Scholar

[27] C. J. Jin, K. Zhu, J. Fan, H. F. Liu, Y. Zhu, H. Q. Gan, J. L. Yu, Z. S. Gao, Y. Cao, and Y. Wu, in The optics of the Five-hundred-meter Aperture Spherical radio Telescope: Proceedings of the International Symposium on Antennas and Propagation (ISAP), Nanjing, 2013.. Google Scholar

[28] D. W. Hogg,. arXiv Google Scholar

[29] Meyer M., Robotham A., Obreschkow D., Westmeier T., Duffy A. R., Staveley-Smith L.. Publ. Astron. Soc. Aust., 2017, 34: e052 CrossRef ADS arXiv Google Scholar

[30] Jones M. G., Papastergis E., Haynes M. P., Giovanelli R.. Mon. Not. R. Astron. Soc., 2015, 449: 1856-1868 CrossRef ADS arXiv Google Scholar

[31] Jones M. G., Haynes M. P., Giovanelli R., Papastergis E.. Mon. Not. R. Astron. Soc., 2016, 455: 1574-1583 CrossRef ADS arXiv Google Scholar

[32] Papastergis E., Giovanelli R., Haynes M. P., Rodríguez-Puebla A., Jones M. G.. Astrophys. J., 2013, 776: 43 CrossRef ADS arXiv Google Scholar

[33] Li J., Wang Y. G., Kong M. Z., Wang J., Chen X., Guo R.. Res. Astron. Astrophys., 2018, 18: 003 CrossRef ADS arXiv Google Scholar

  • Figure 1

    (Color online) An example sketch of two adjacent drift scans of FLAN using the orientation used by CRAFTS. Blue and red circles with a diameter of 2.9 arcmin represent the position and the size of beams in two drift scans. The dotted lines show the drifting tracks of individual beams.

  • Figure 2

    (Color online) (a) Beamsize versus frequency when zenith angle is below 26.4$^\circ$, the red dashed line represents the fitted result from eq. (1). (b) The blue asterisks represent the fitted result of m1 by eq. (1) at different zenith angles, which tells the beamsize at the frequency of 1250 MHz, while the red dashed line represents the fitted line from eq. (2). (c) The gain versus zenith angle, the red dashed line represents the fitted result from eq. (3). (d) System temperature versus zenith angle,the red dashed line represents the fitted result from eq. (4). The parameters here are all obtained from center beam of the 19-beam receiver (FLAN).

  • Figure 3

    (Color online) A spectrum of AGC11820 taken by FAST on 2018/10/22. The horizontal axis represents radial velocity and the vertical axis represents antenna temperature.

  • Figure 4

    (Color online) (a) shows $t_{\rm~eff}$ versus DEC at redshift of 0 after one pass; (b) shows $t_{\rm~eff}$ after one pass as a function of $z$ at DEC of 25.6$^\circ$ and 65.6$^\circ$ in blue and red solid line respectively.

  • Figure 5

    The effective integration time map of one-pass of CRAFTS in $z$-DEC plane. The pixel size is $21.9'$ in declination and 0.005 in redshift.

  • Figure 6

    (Color online) (a) shows $S_{\rm~rms}$ as a function of DEC at redshift of 0 after one pass; (b) shows $S_{\rm~rms}$ after one pass versus $z$ at DEC of 25.6$^\circ$, 65.6$^\circ$, –10$^\circ$ in blue, red and black soild line, respectively.

  • Figure 7

    (Color online) The rms noise per channel map for CRAFTS drifting one-pass in $z$-DEC plane, with same pixel size as Figure 5.

  • Figure 8

    (Color online) The comparison of $M_{\rm~HI,lim}$ and $M_{\rm~conf}$ of CRAFTS after two passes at DEC of 25.6$^\circ$ (in blue lines) and –14$^\circ$ (in red lines). Solid lines represent $M_{\rm~HI,lim}$ of CRAFTS, dashed lines represent $M_{\rm~conf}$ including 2-dimensional correlation function measured from $\alpha~.40$ catalogue, which tells the excess probability (above random) of two galaxies being separated by a given distance in a rather small scale [33]. The solid-dashed lines represent the $M_{\rm~conf}$ if we assume HI galaxies are uniformly distributed. (a) and (b) represent two different results by assuming $\Omega_{\rm~HI}$ is constant and $\rho_{\rm~HI}\,~\propto~\,~(1+z)^{3}$, respectively.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号