logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 62, Issue 9: 996111(2019) https://doi.org/10.1007/s11433-019-9387-7

High-throughput screening for biomedical applications in a Ti-Zr-Nb alloy system through masking co-sputtering

More info
  • ReceivedJan 28, 2019
  • AcceptedMar 7, 2019
  • PublishedApr 25, 2019
PACS numbers

Abstract

A method of co-sputtering deposition combined with physical masking was applied to the parallel preparation of a ternary Ti-Nb-Zr system alloy. Sixteen independent specimens with varying compositions were obtained. Their microstructure, phase structure, Young’s modulus, nanoindentation hardness, and electrochemical behavior in a phosphate buffer solution (PBS) were studied in detail. It was revealed that the Ti-Zr-Nb alloys possess a single BCC structure. As confirmed via nanoindentation tests, the Young’s modulus of the specimens ranged from 80.3 to 94.8 GPa and the nanoindentation hardness ranged from 3.6 to 5.0 GPa. By optimizing the composition of the specimens, the Ti34Zr52Nb14 alloy was made to possess the lowest modulus in this work (76.5 GPa). Moreover, the Ti34Zr52Nb14 alloy showed excellent corrosion resistance in PBS without any tendency for pitting at anodic potentials up to 1 Vsce. These preliminary advantages offer the opportunity to explore new orthopedic implant alloys based on Ti-Zr-Nb alloys. Moreover, this work provides an effective method for the parallel preparation of biomedical alloys.


Funded by

the National Natural Science Foundation of China(Grant,No.,51671020)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 51671020).


References

[1] D. C. Ludwigson, Metal Eng. 5, 1 (1965). Google Scholar

[2] Navarro M., Michiardi A., Castaño O., Planell J. A.. J. R. Soc. Interface, 2008, 5: 1137 CrossRef PubMed Google Scholar

[3] R. M. Pilliar, Metallic Biomaterials (Springer, New York, 2009), p. 41. Google Scholar

[4] Geetha M., Singh A. K., Asokamani R., Gogia A. K.. Prog. Mater. Sci., 2009, 54: 397 CrossRef Google Scholar

[5] Eisenbarth E., Velten D., Müller M., Thull R., Breme J.. Biomaterials, 2004, 25: 5705 CrossRef PubMed Google Scholar

[6] Fornell J., Pellicer E., Van Steenberge N., González S., Gebert A., Suriñach S., Baró M. D., Sort J.. Mater. Sci. Eng.-A, 2013, 559: 159 CrossRef Google Scholar

[7] Xie K. Y., Wang Y., Zhao Y., Chang L., Wang G., Chen Z., Cao Y., Liao X., Lavernia E. J., Valiev R. Z., Sarrafpour B., Zoellner H., Ringer S. P.. Mater. Sci. Eng.-C, 2013, 33: 3530 CrossRef PubMed Google Scholar

[8] Fornell J., Van Steenberge N., Varea A., Rossinyol E., Pellicer E., Suriñach S., Baró M. D., Sort J.. J. Mech. Behav. Biomed. Mater., 2011, 4: 1709 CrossRef PubMed Google Scholar

[9] Chen N., Shi X., Witte R., Nakayama K. S., Ohmura K., Wu H., Takeuchi A., Hahn H., Esashi M., Gleiter H., Inoue A., Louzguine D. V.. J. Mater. Chem. B, 2013, 1: 2568 CrossRef Google Scholar

[10] Lee W. S., Lin C. F., Chen T. H., Hwang H. H.. J. Mech. Behav. Biomed. Mater., 2008, 1: 336 CrossRef PubMed Google Scholar

[11] Velten D., Schenk-Meuser K., Biehl V., Duschner H., Breme J.. Z. Metallk., 2003, 94: 667 CrossRef Google Scholar

[12] Tamilselvi S., Raman V., Rajendran N.. Electrochim. Acta, 2007, 52: 839 CrossRef Google Scholar

[13] Guitar A., Vigna G., Luppo M. I.. J. Mech. Behav. Biomed. Mater., 2009, 2: 156 CrossRef PubMed Google Scholar

[14] Semlitsch M., Staub F., Weber H.. Biomed. Tech/Biomed. Eng., 1985, 30: 334 CrossRef Google Scholar

[15] Popa M. V., Demetrescu I., Vasilescu E., Drob P., Lopez A. S., Mirza-Rosca J., Vasilescu C., Ionita D.. Electrochim. Acta, 2004, 49: 2113 CrossRef Google Scholar

[16] Wang S. P., Xu J.. Mater. Sci. Eng.-C, 2017, 73: 80 CrossRef PubMed Google Scholar

[17] Martins D. Q., Osório W. R., Souza M. E. P., Caram R., Garcia A.. Electrochim. Acta, 2008, 53: 2809 CrossRef Google Scholar

[18] Geetha M., Singh A. K., Muraleedharan K., Gogia A. K., Asokamani R.. J. Alloys Compd., 2001, 329: 264 CrossRef Google Scholar

[19] Bertrand E., Gloriant T., Gordin D. M., Vasilescu E., Drob P., Vasilescu C., Drob S. I.. J. Mech. Behav. Biomed. Mater., 2010, 3: 559 CrossRef PubMed Google Scholar

[20] Banerjee R., Nag S., Stechschulte J., Fraser H. L.. Biomaterials, 2004, 25: 3413 CrossRef PubMed Google Scholar

[21] Hao Y. L., Li S. J., Sun S. Y., Zheng C. Y., Yang R.. Acta Biomater., 2007, 3: 277 CrossRef PubMed Google Scholar

[22] Oak J. J., Louzguine-Luzgin D. V., Inoue A.. J. Mater. Res., 2007, 22: 1346 CrossRef ADS Google Scholar

[23] Zhu S. L., Wang X. M., Qin, F. X., Inoue A.. Mater. Sci. Eng.-A, 2007, 459: 233 CrossRef Google Scholar

[24] Liu Y., Wang Y. M., Pang H. F., Zhao Q., Liu L.. Acta Biomater., 2013, 9: 7043 CrossRef PubMed Google Scholar

[25] Yeh J. W.. JOM, 2013, 65: 1759 CrossRef ADS Google Scholar

[26] Wu Y. D., Cai Y. H., Wang T., Si J. J., Zhu J., Wang Y. D., Hui X. D.. Mater. Lett., 2014, 130: 277 CrossRef Google Scholar

[27] Wang S. P., Xu J.. Intermetallics, 2018, 95: 59 CrossRef Google Scholar

[28] Zhang Y., Yan X. H., Ma J., Lu Z. P., Zhao Y. H.. J. Mater. Res., 2018, 33: 3330 CrossRef ADS Google Scholar

[29] Yan X. H., Li J. S., Zhang W. R., Zhang Y.. Mater. Chem. Phys., 2017, 210: 12 CrossRef Google Scholar

[30] Zhang Y., Lu Z. P., Ma S. G., Liaw P. K., Tang Z., Cheng Y. Q., Gao M. C.. MRS Commun., 2014, 4: 57 CrossRef Google Scholar

[31] International Organization for Standardization. Metallic Materials-Instrumented Indentation Test for Hardness and Materials Parameteres-Part 1: Test Method, BS EN ISO 14577-1: 2002 (2002). Google Scholar

[32] Pelleg J., Zevin L. Z., Lungo S., Croitoru N.. Thin Solid Films, 1991, 197: 117 CrossRef ADS Google Scholar

[33] Yang H. H., Je J. H., Lee K. B.. J. Mater. Sci. Lett., 1995, 14: 1635 CrossRef Google Scholar

[34] Meng L. J., Santos M. P.. Surf. Coatings Tech., 1997, 90: 64 CrossRef Google Scholar

[35] Yang X., Zhang Y.. Mater. Chem. Phys., 2012, 132: 233 CrossRef Google Scholar

[36] Guo S., Ng C., Lu J., Liu C. T.. J. Appl. Phys., 2011, 109: 103505 CrossRef ADS Google Scholar

[37] H. Hertz, J. Reine Angew. Math. 92, 156 (1881). Google Scholar

  • Figure 1

    (Color online) (a) Schematic diagram of parallel preparation for a ternary Ti-Nb-Zr system and (b) the shadow mask used in the present work.

  • Figure 2

    (Color online) Schematic location of Ti-Zr-Nb alloys in a ternary compositional map.

  • Figure 3

    (Color online) SEM images of the deposited Ti-Zr-Nb alloys taken from the surface and cross-section.

  • Figure 4

    (Color online) Plane and 3D morphologies of three typical Ti-Zr-Nb alloy surfaces. (a) Spherical-shaped surface feature, (b) pyramid-shaped surface feature, (c) faceted surface feature.

  • Figure 5

    (Color online) Trend in Young’s modulus of Ti-Zr-Nb alloys. (a) 3D surface map, (b) counter map, (c) specific values of specimens with lower Young’s moduli.

  • Figure 6

    (Color online) Indentation hardness values of the 16 specimens tested.

  • Figure 7

    (Color online) XRD patterns of Ti-Zr-Nb alloys with lower Young’s moduli: (2-2) Ti47Zr40Nb13, (2-3) Ti36Zr41Nb23, (3-2) Ti36Zr54Nb10, (3-3) Ti26Zr56Nb18, and (3-4) Ti20Zr54Nb16.

  • Figure 8

    (Color online) Element contents of the Ti-Zr-Nb alloys with lower Young’s moduli: (2-2) Ti47Zr40Nb13, (2-3) Ti36Zr41Nb23, (3-2) Ti36Zr54Nb10, (3-3) Ti26Zr56Nb18, (3-4) Ti20Zr54Nb16.

  • Figure 9

    (Color online) Potentiodynamic polarization curves of Ti34Zr52Nb14 in PBS.

  • Figure 10

    (Color online) Conventional biomedical materials. Abbreviations: TZN: Ti-Zr-Nb, TZNT: Ti-Zr-Nb-Ta, TMZF: Ti-Mo-Zr-Fe, TMZA: Ti-Mo-Zr-Al, CEAs: Configuration entropy alloys.

  • Table 1   Chemical compositions of Ti-Nb-Zr alloys

    Number

    (V-H)

    Ti

    (at.%)

    Zr

    (at.%)

    Nb

    (at.%)

    Composition

    1-1

    70.75

    21.68

    7.57

    Ti71Zr22Nb7

    1-2

    60.57

    25.44

    13.98

    Ti61Zr25Nb14

    1-3

    45.21

    27.23

    27.56

    Ti45Zr27Nb28

    1-4

    31.42

    25.88

    42.70

    Ti31Zr26Nb43

    2-1

    59.47

    32.19

    8.34

    Ti60Zr32Nb8

    2-2

    47.34

    39.52

    13.14

    Ti47Zr40Nb13

    2-3

    35.84

    41.23

    22.94

    Ti36Zr41Nb23

    2-4

    26.99

    37.73

    35.28

    Ti27Zr38Nb35

    3-1

    42.39

    51.17

    6.44

    Ti42Zr51Nb7

    3-2

    35.57

    54.13

    10.30

    Ti36Zr54Nb10

    3-3

    25.90

    56.24

    17.86

    Ti26Zr56Nb18

    3-4

    19.95

    55.17

    24.78

    Ti20Zr55Nb25

    4-1

    29.48

    64.74

    5.78

    Ti29Zr65Nb6

    4-2

    23.76

    68.82

    7.43

    Ti24Zr69Nb7

    4-3

    19.05

    69.80

    11.14

    Ti19Zr70Nb11

    4-4

    15.34

    67.57

    17.09

    Ti15Zr68Nb17

  • Table 2   Selected parameters of the constituent elements of Ti-Zr-Nb

    Element

    Atomic radius r (nm)

    Crystal structure

    Lattice parameter a (nm)

    Melting temperature Tm (K)

    Valence electron concentration (VEC)

    Ti

    0.143

    A2

    0.32998

    1941

    4

    Zr

    0.16

    A2

    0.3609

    2128

    4

    Nb

    0.143

    A2

    0.33007

    2750

    5

    Lattice parameter of BCC structure at high temperature.

  • Table 3   , ∆H, ∆S, and VEC values of specimens with lower Young’s moduli

    Specimen

    δ (%)

    ∆Hmix(kJ/mol)

    ∆Smix(J/K/mol)

    Tm (K)

    Ω

    VEC

    2-2

    4.98%

    1.33

    8.21

    2121

    13.09

    1.87

    2-3

    5.18%

    2.17

    8.9

    2203

    9.04

    1.77

    3-2

    5.14%

    1.19

    7.77

    2126

    13.88

    1.90

    3-3

    5.24%

    1.98

    8.16

    2191

    9.03

    1.82

    3-4

    5.35%

    2.63

    8.33

    2249

    7.12

    1.75

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1