logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 63 , Issue 1 : 219511(2020) https://doi.org/10.1007/s11433-019-9423-3

An ACE/CRIS-observation-based Galactic Cosmic Rays heavy nuclei spectra model II

More info
  • ReceivedApr 25, 2019
  • AcceptedApr 30, 2019
  • PublishedJun 5, 2019
PACS numbers

Abstract

An observation-based Galactic Cosmic Ray (GCR) spectral model for heavy nuclei is developed.Zhao and Qin [J.~Geophys.~Res.~Space~Phys.~~\bf{118},~1837~(2013)] proposed an empirical elemental GCR spectra model for nuclear charge $5~\leq~z~\leq~28$ over the energy range $\sim$30 to 500 MeV/nuc, which is proved to be successful in predicting yearly averaged GCR heavy nuclei spectra.Based on the latest highly statistically precise measurements from ACE/CRIS,a further elemental GCR model with monthly averaged spectra is presented. The model can reproduce the past and predict the futureGCR intensity monthly by correlating model parameters with thecontinuous sunspot number (SSN) record. The effects of solar activity on GCR modulation are considered separately for odd and even solar cycles. Compared with other comprehensive GCR models, our modeling results are satisfyingly consistent with the GCR spectral measurements from ACE/SIS and IMP-8, and have comparable prediction accuracy as the Badhwar & O'Neill 2014 model.A detailed error analysis is also provided.Finally, the GCR carbon and iron nuclei fluxes for the subsequent two solar cycles (SC 25 and 26) are predicted and they show a potential trend in reduced flux amplitude, which is suspected to be relevant to possible weak solar cycles.


References

[1] Vainio R., Desorgher L., Heynderickx D., Storini M., Flückiger E., Horne R. B., Kovaltsov G. A., Kudela K., Laurenza M., McKenna-Lawlor S., Rothkaehl H., Usoskin I. G.. Space Sci Rev, 2009, 147: 187-231 CrossRef ADS Google Scholar

[2] Potgieter M. S.. Space Sci. Rev., 1998, 83: 147-158 CrossRef Google Scholar

[3] Potgieter M.. Living Rev. Sol. Phys., 2013, 10: 3 CrossRef ADS arXiv Google Scholar

[4] Zhang M.. Astrophys. J., 1999, 513: 409-420 CrossRef ADS Google Scholar

[5] Jokipii J. R.. Astrophys. Space Sci., 2000, 274: 77-96 CrossRef ADS Google Scholar

[6] Zhao L. L., Qin G., Zhang M., Heber B.. J. Geophys. Res. Space Phys., 2014, 119: 1493-1506 CrossRef ADS arXiv Google Scholar

[7] Lockwood J. A., Webber W. R.. J. Geophys. Res., 1967, 72: 5977-5989 CrossRef ADS Google Scholar

[8] McDonald F. B.. Space Sci. Rev., 1998, 83: 33-50 CrossRef Google Scholar

[9] Zhao L. L., Zhang H.. Astrophys. J., 2015, 805: 6 CrossRef ADS Google Scholar

[10] Zhao L. L., Zhang H.. Astrophys. J., 2016, 827: 13 CrossRef ADS Google Scholar

[11] Hale G. E., Nicholson S. B.. Astrophys. J., 1925, 62: 270 CrossRef ADS Google Scholar

[12] Thomas S. R., Owens M. J., Lockwood M.. Sol. Phys., 2014, 289: 407-421 CrossRef ADS arXiv Google Scholar

[13] Alania M. V., Gil A., Modzelewska R.. Adv. Space Res., 2008, 41: 280-286 CrossRef ADS Google Scholar

[14] Alania M. V., Modzelewska R., Wawrzynczak A.. Adv. Space Res., 2010, 45: 421-428 CrossRef ADS arXiv Google Scholar

[15] Alania M. V., Modzelewska R., Wawrzynczak A.. Sol. Phys., 2011, 270: 629-641 CrossRef ADS arXiv Google Scholar

[16] Simpson J. A.. Annu. Rev. Nucl. Part. Sci., 1983, 33: 323-382 CrossRef ADS Google Scholar

[17] Matthi? D., Berger T., Mrigakshi A. I., Reitz G.. Adv. Space Res., 2013, 51: 329-338 CrossRef ADS Google Scholar

[18] Davis A. J., Mewaldt R. A., Cohen C. M. S., Cummings A. C., George J. S., Leske R. A., Stone E. C., Wiedenbeck M. E., Yanasak N. E., Christian E. R., von Rosenvinge T. T., Binns W. R., Hink P. L.. J. Geophys. Res., 2001, 106: 29979-29987 CrossRef ADS Google Scholar

[19] Durante M., Cucinotta F. A.. Rev. Mod. Phys., 2011, 83: 1245-1281 CrossRef ADS Google Scholar

[20] Le Roux J. A., Potgieter M. S.. Astrophys. J., 1995, 442: 847-851 CrossRef ADS Google Scholar

[21] Ferreira S. E. S., Potgieter M. S.. Astrophys. J., 2004, 603: 744-752 CrossRef ADS Google Scholar

[22] Luo X., Zhang M., Potgieter M., Feng X., Pogorelov N. V.. Astrophys. J., 2015, 808: 82 CrossRef ADS Google Scholar

[23] Lezniak J. A., Webber W. R.. J. Geophys. Res., 1971, 76: 1605-1624 CrossRef ADS Google Scholar

[24] Ryan M. J., Ormes J. F., Balasubrahmanyan V. K.. Phys. Rev. Lett., 1972, 28: 985-988 CrossRef ADS Google Scholar

[25] Seo E. S., Ormes J. F., Streitmatter R. E., Stochaj S. J., Jones W. V., Stephens S. A., Bowen T.. Astrophys. J., 1991, 378: 763-772 CrossRef ADS Google Scholar

[26] Asakimori K., Burnett T. H., Cherry M. L., Chevli K., Christ M. J., Dake S., Derrickson J. H., Fountain W. F., Fuki M., Gregory J. C., Hayashi T., Holynski R., Iwai J., Iyono A., Johnson J., Kobayashi M., Lord J., Miyamura O., Moon K. H., Nilsen B. S., Oda H., Ogata T., Olson E. D., Parnell T. A., Roberts F. E., Sengupta K., Shiina T., Strausz S. C., Sugitate T., Takahashi Y., Tominaga T., Watts J. W., Wefel J. P., Wilczynska B., Wilczynski H., Wilkes R. J., Wolter W., Yokomi H., Zager E.. Astrophys. J., 1998, 502: 278-283 CrossRef ADS Google Scholar

[27] Alcaraz J., Alvisi D., Alpat B., Ambrosi G., Anderhub H., Ao L., Arefiev A., Azzarello P., Babucci E., Baldini L., Basile M., Barancourt D., Barao F., Barbier G., Barreira G., Battiston R., Becker R., Becker U., Bellagamba L., Béné P., Berdugo J., Berges P., Bertucci B., Biland A., Bizzaglia S., Blasko S., Boella G., Boschini M., Bourquin M., Bruni G., Buenerd M., Burger J. D., Burger W. J., Cai X. D., Cavalletti R., Camps C., Cannarsa P., Capell M., Casadei D., Casaus J., Castellini G., Chang Y. H., Chen H. F., Chen H. S., Chen Z. G., Chernoplekov N. A., Chiarini A., Chiueh T. H., Chuang Y. L., Cindolo F., Commichau V., Contin A., Cotta-Ramusino A., Crespo P., Cristinziani M., da Cunha J. P., Dai T. S., Deus J. D., Dinu N., Djambazov L., D'Antone I., Dong Z. R., Emonet P., Engelberg J., Eppling F. J., Eronen T., Esposito G., Extermann P., Favier J., Feng C. C., Fiandrini E., Finelli F., Fisher P. H., Flaminio R., Fluegge G., Fouque N., Galaktionov Y., Gervasi M., Giusti P., Grandi D., Gu W. Q., Hangarter K., Hasan A., Hermel V., Hofer H., Huang M. A., Hungerford W., Ionica M., Ionica R., Jongmanns M., Karlamaa K., Karpinski W., Kenney G., Kenny J., Kim W., Klimentov A., Kossakowski R., Koutsenko V., Laborie G., Laitinen T., Lamanna G., Laurenti G., Lebedev A., Lee S. C., Levi G., Levtchenko P., Liu C. L., Liu H. T., Lolli M., Lopes I., Lu G., Lu Y. S., Lübelsmeyer K., Luckey D., Lustermann W., Ma?a C., Margotti A., Massera F., Mayet F., McNeil R. R., Meillon B., Menichelli M., Mezzanotte F., Mezzenga R., Mihul A., Molinari G., Mourao A., Mujunen A., Palmonari F., Pancaldi G., Papi A., Park I. H., Pauluzzi M., Pauss F., Perrin E., Pesci A., Pevsner A., Pilastrini R., Pimenta M., Plyaskin V., Pojidaev V., Postema H., Postolache V., Prati E., Produit N., Rancoita P. G., Rapin D., Raupach F., Recupero S., Ren D., Ren Z., Ribordy M., Richeux J. P., Riihonen E., Ritakari J., Roeser U., Roissin C., Sagdeev R., Santos D., Sartorelli G., Schultz von Dratzig A., Schwering G., Seo E. S., Shoutko V., Shoumilov E., Siedling R., Son D., Song T., Steuer M., Sun G. S., Suter H., Tang X. W., Ting S. C. C., Ting S. M., Tornikoski M., Torromeo G., Torsti J., Trümper J., Ulbricht J., Urpo S., Usoskin I., Valtonen E., Vandenhirtz J., Velcea F., Velikhov E., Verlaat B., Vetlitsky I., Vezzu F., Vialle J. P., Viertel G., Vité D., Von Gunten H., Waldmeier Wicki S., Wallraff W., Wang B. C., Wang J. Z., Wang Y. H., Wiik K., Williams C., Wu S. X., Xia P. C., Yan J. L., Yan L. G., Yang C. G., Yang M., Ye S. W., Yeh P., Xu Z. Z., Zhang H. Y., Zhang Z. P., Zhao D. X., Zhu G. Y., Zhu W. Z., Zhuang H. L., Zichichi A.. Phys. Lett. B, 2000, 472: 215-226 CrossRef ADS Google Scholar

[28] E. N. Parker, planss 13, 9 (1965). Google Scholar

[29] Slaba T. C., Blattnig S. R.. Space Weather, 2014, 12: 217-224 CrossRef ADS Google Scholar

[30] Slaba T. C., Blattnig S. R.. Space Weather, 2014, 12: 225-232 CrossRef ADS Google Scholar

[31] Nymmik R. A., Panasyuk M. I., Pervaya T. I., Suslov A. A.. Adv. Space Res., 1994, 14: 759-763 CrossRef ADS Google Scholar

[32] Usoskin I. G., Alanko-Huotari K., Kovaltsov G. A., Mursula K.. J. Geophys. Res., 2005, 110: A12108 CrossRef ADS Google Scholar

[33] J. H. Adams, Cosmic ray effects on microelectronics, Part IV, Naval Research Laboratory Memorandum Report 5901 (Naval Research Laboratory, Washington, 1986). Google Scholar

[34] Tylka A. J., Adams J. H., Boberg P. R., Brownstein B., Dietrich W. F., Flueckiger E. O., Petersen E. L., Shea M. A., Smart D. F., Smith E. C.. IEEE Trans. Nucl. Sci., 1997, 44: 2150-2160 CrossRef ADS Google Scholar

[35] Adams J. H., Barghouty A. F., Mendenhall M. H., Reed R. A., Sierawski B. D., Warren K. M., Watts J. W., Weller R. A.. IEEE Trans. Nucl. Sci., 2012, 59: 3141-3147 CrossRef ADS Google Scholar

[36] Badhwar G. D., O'Neill P. M.. Adv. Space Res., 1994, 14: 749-757 CrossRef ADS Google Scholar

[37] G. D. Badhwar, and P. M. O'Neill, Adv. Space Res. 17, 7 (1996). Google Scholar

[38] O'Neill P. M.. IEEE Trans. Nucl. Sci., 2010, 57: 3148 CrossRef Google Scholar

[39] P. M. O'Neill, and C. C. Foster, Badhwar-O'Neill 2011 galactic cosmic ray flux model description, NASA/TP-2013-217376 (2013). Google Scholar

[40] P. M. O'Neill, S. Golge, and T. C. Slaba, Badhwar-O'Neill 2014 galactic cosmic ray flux model description, NASA/TP-2015-218569 (2015). Google Scholar

[41] Nymmik R. A., Panasyuk M. I., Pervaja T. I., Suslov A. A.. Int. J. Radiat. Appl. Instrumentation. Part D. Nucl. Tracks Radiat. Measurements, 1992, 20: 427-429 CrossRef Google Scholar

[42] Slaba T. C., Xu X., Blattnig S. R., Norman R. B.. Space Weather, 2014, 12: 233-245 CrossRef ADS Google Scholar

[43] Mrigakshi A. I., Matthi? D., Berger T., Reitz G., Wimmer-Schweingruber R. F.. J. Geophys. Res., 2012, 117: A08109 CrossRef ADS Google Scholar

[44] Zhao L. L., Qin G.. J. Geophys. Res. Space Phys., 2013, 118: 1837-1848 CrossRef ADS Google Scholar

[45] Stone E. C., Cohen C. M. S., Cook W. R., Cummings A. C., Gauld B., Kecman B., Leske R. A., Mewaldt R. A., Thayer M. R., Dougherty B. L., Grumm R. L., Milliken B. D., Radocinski R. G., Wiedenbeck M. E., Christian E. R., Shuman S., Trexel H., von Rosenvinge T. T., Binns W. R., Crary D. J., Dowkontt P., Epstein J., Hink P. L., Klarmann J., Lijowski M., Olevitch M. A.. Space Sci. Rev., 1998, 86: 285-356 CrossRef ADS Google Scholar

[46] Kuznetsov N. V., Popova H., Panasyuk M. I.. J. Geophys. Res. Space Phys., 2017, 822: 1463-1472 CrossRef ADS Google Scholar

[47] Nymmik R. A.. Adv. Space Res., 2000, 26: 1875-1878 CrossRef ADS Google Scholar

[48] George J. S., Lave K. A., Wiedenbeck M. E., Binns W. R., Cummings A. C., Davis A. J., de Nolfo G. A., Hink P. L., Israel M. H., Leske R. A., Mewaldt R. A., Scott L. M., Stone E. C., von Rosenvinge T. T., Yanasak N. E.. Astrophys. J., 2009, 698: 1666-1681 CrossRef ADS Google Scholar

[49] Petrovay K.. Living Rev. Sol. Phys., 2010, 7: 6 CrossRef PubMed ADS arXiv Google Scholar

[50] Shepherd S. J., Zharkov S. I., Zharkova V. V.. Astrophys. J., 2014, 795: 46 CrossRef ADS Google Scholar

[51] Zharkova V. V., Shepherd S. J., Popova E., Zharkov S. I.. Sci Rep, 2015, 5: 15689 CrossRef PubMed ADS Google Scholar

  • Table 1   The measured energy bands from ACE/CRIS instrument$^{1)}$
    Element($z$) $\textit{E}_{1}$ $\Delta~\textit{E}_{1}$ $\textit{E}_{2}$ $\Delta~\textit{E}_{2}$ $\textit{E}_{3}$ $\Delta~\textit{E}_{3}$ $\textit{E}_{4}$ $\Delta~\textit{E}_{4}$ $\textit{E}_{5}$ $\Delta~\textit{E}_{5}$ $\textit{E}_{6}$ $\Delta~\textit{E}_{6}$ $\textit{E}_{7}$ $\Delta~\textit{E}_{7}$
    B(5) 59.6 14.4 79.7 23.1 102.0 19.1 121.1 16.8 138.2 15.3 154.0 14.1 168.6 13.5
    C(6) 68.3 16.6 91.5 26.6 117.3 22.1 139.3 19.5 159.1 17.8 177.4 16.4 194.5 15.7
    N(7) 73.3 17.8 98.1 28.5 125.9 23.8 149.6 21.0 171.0 19.2 190.7 17.7 209.2 16.9
    O(8) 80.4 19.6 107.8 31.5 138.4 26.3 164.7 23.3 188.4 21.3 210.3 19.7 230.8 18.8
    F(9) 83.5 20.4 112.0 32.8 143.8 27.4 171.1 24.3 195.9 22.2 218.7 20.6 240.0 19.6
    Ne(10) 89.5 21.8 120.1 35.2 154.4 29.5 183.9 26.1 210.6 24.0 235.3 22.2 258.4 21.2
    Na(11) 94.0 23.1 126.2 37.1 162.4 31.2 193.5 27.6 221.7 25.4 247.8 23.5 272.3 22.6
    Mg(12) 100.2 24.6 134.7 39.8 173.4 33.3 206.8 29.6 237.1 27.3 265.2 25.4 291.5 24.2
    Al(13) 103.8 25.6 139.6 41.3 179.8 34.7 214.5 30.9 246.1 28.4 275.3 26.4 302.8 25.2
    Si(14) 110.1 27.1 148.2 44.0 191.1 37.0 228.1 33.0 261.8 30.4 293.1 28.3 322.6 27.1
    P(15) 112.7 27.8 151.8 45.1 195.9 38.0 233.9 33.9 268.6 31.2 300.8 29.1 331.1 27.9
    S(16) 118.2 29.2 159.4 47.4 205.8 40.1 245.9 35.8 282.5 32.9 316.6 30.7 348.7 29.5
    Cl(17) 120.2 29.8 162.1 48.2 209.4 40.8 250.3 36.4 287.7 33.6 322.4 31.4 355.1 30.1
    Ar(18) 125.0 31.1 168.8 50.5 218.1 42.7 260.9 38.2 300.0 35.3 336.4 32.9 370.8 31.7
    K(19) 127.9 31.9 172.8 51.7 223.4 43.9 267.4 39.2 307.5 36.3 344.9 33.9 380.3 32.5
    Ca(20) 131.6 32.8 177.9 53.5 230.1 45.3 275.6 40.5 317.1 37.5 355.9 35.1 392.4 33.8
    Sc(21) 133.5 33.4 180.5 54.4 233.7 46.0 279.9 41.2 322.2 38.1 361.6 35.7 398.8 34.4
    Ti(22) 137.1 34.3 185.5 55.9 240.3 47.5 287.9 42.5 331.6 39.4 372.3 36.9 410.8 35.5
    V(23) 139.9 35.1 189.5 57.2 245.5 48.6 294.3 43.6 339.1 40.4 380.8 37.9 420.3 36.4
    Cr(24) 144.0 36.1 195.1 59.0 253.0 50.2 303.5 45.0 349.8 41.8 393.0 39.1 434.0 37.8
    Mn(25) 146.8 37.0 199.1 60.3 258.3 51.3 309.9 46.2 357.3 42.8 401.6 40.2 443.5 38.7
    Fe(26) 150.4 37.9 204.1 62.1 265.0 52.8 318.1 47.5 366.9 44.1 412.6 41.4 455.9 39.9
    Co(27) 153.6 38.9 208.5 63.4 270.9 54.1 325.3 48.7 375.4 45.2 422.3 42.5 466.7 41.1
    Ni(28) 158.9 40.2 215.9 66.0 280.7 56.4 337.3 50.8 389.5 47.1 438.4 44.4 484.7 42.9

    [b]

  • Table 2   Parameter $\lambda^*(z)$ used in our GCR model
    $z$ $\lambda(z)$ $z$ $\lambda(z)$
    5 0.77 17 0.96
    6 0.12 18 1.29
    7 0.77 19 1.02
    8 0.00 20 1.42
    9 0.55 21 0.75
    10 1.01 22 1.56
    11 0.54 23 0.81
    12 1.44 24 1.27
    13 1.09 25 1.04
    14 1.59 26 3.38
    15 0.73 27 0.33
    16 1.34 28 1.15
  • Table 3   Annual relative difference for all elements
    Year $Rd$ (%) $|Rd|$ (%)
    cr lr)2-3lr)4-5 Our model CRÈME2009 Our model CRÈME2009cr 1998.5 –1.3 24.2 10.1 27.1
    1999.5 –0.1 1.2 13.3 15.7
    2000.5 –0.3 56.8 16.5 59.4
    2001.5 7.2 39.8 18.3 42.8
    2002.5 0.2 24.3 13.6 29.9
    2003.5 12.0 68.5 21.6 69.4
    2004.5 0.5 45.9 13.0 47.6
    2005.5 –1.0 44.5 14.3 46.1
    2006.5 –2.7 10.0 11.2 16.3
    2007.5 11.5 1.6 14.7 13.6
    2008.5 3.1 4.0 11.2 16.4
    2009.5 –7.2 –16.2 10.8 20.4
    2010.5 –1.1 –2.2 11.3 16.2
    2011.5 3.3 26.5 13.7 29.4
    2012.5 6.1 30.8 12.1 31.8
    2013.5 17.0 37.4 20.7 38.5
    2014.5 9.2 21.4 14.8 25.7
    2015.5 1.9 9.9 15.8 19.7
    2016.5 13.5 –7.7 15.9 18.3
    2017.5 –8.6 –10.7 13.1 20.2
    2018.5 –2.8 –6.5 9.3 16.7
    series Mean series 2.8 series 19.2 series 14.0 series 29.6
  • Table 4   The averaged relative difference between modeled results and measurements
    Model $Rd$ (%) $|Rd|$ (%)
    Our model 3.9 14.5
    CRÈME2009 20.8 31.4
    BON2011 17.9 23.7
    BON2014 –0.4 13.0

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号