logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 63 , Issue 2 : 224601(2020) https://doi.org/10.1007/s11433-019-9643-0

Nature-inspired surface topography: design and function

More info
  • ReceivedMay 28, 2019
  • AcceptedJun 28, 2019
  • PublishedOct 22, 2019
PACS numbers

Abstract

Learning from nature has traditionally and continuously provided important insights to drive a paradigm shift in technology. In particular, recent studies show that many biological organisms exhibit spectacular surface topography such as shape, size, spatial organization, periodicity, interconnectivity, and hierarchy to endow them with the capability to adapt dynamically and responsively to a wide range of environments. More excitingly, in a broader perspective, these normally neglected topological features have the potential to fundamentally change the way of how engineering surface works, such as how fluid flows, how heat is transported, and how energy is generated, saved, and converted, to name a few. Thus, the design of nature-inspired surface topography for unique functions will spur new thinking and provide paradigm shift in the development of the new engineering surfaces. In this review, we first present a brief introduction to some insights extracted from nature. Then, we highlight recent progress in designing new surface topographies and demonstrate their applications in emerging areas including thermal-fluid transport, anti-icing, water harvesting, power generation, adhesive control, and soft robotics. Finally, we offer our perspectives on this emerging field, with the aim to stimulate new thinking on the development of next-generation of new materials and devices, and dramatically extend the boundaries of traditional engineering.


Funded by

the National Key Research and Development Program of China(2018YFA0209500)

Research Council of Hong Kong(Grant,Nos.,C1018-17G,11275216)

Shenzhen Science and Technology Innovation Council(Grant,No.,JCYJ20170413141208098)

the National Natural Science Foundation of China(Grant,No.,51706100)

the Natural Science Foundation of Jiangsu Province(Grant,No.,BK20180477)

and City University of Hong Kong(Grant,No.,9360140)


Acknowledgment

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0209500), the Research Council of Hong Kong (Grant Nos. C1018-17G, and 11275216), the Shenzhen Science and Technology Innovation Council (Grant No. JCYJ20170413141208098), the National Natural Science Foundation of China (Grant No. 51706100), the Natural Science Foundation of Jiangsu Province (Grant No. BK20180477), and the City University of Hong Kong (Grant No. 9360140).


References

[1] Meyers M. A., McKittrick J., Chen P. Y.. Science, 2013, 339: 773 CrossRef PubMed ADS Google Scholar

[2] Wegst U. G. K., Bai H., Saiz E., Tomsia A. P., Ritchie R. O.. Nat. Mater., 2015, 14: 23 CrossRef PubMed ADS Google Scholar

[3] Egan P., Sinko R., LeDuc P. R., Keten S.. Nat. Commun., 2015, 6: 7418 CrossRef PubMed ADS Google Scholar

[4] Zhao Y., Xie Z., Gu H., Zhu C., Gu Z.. Chem. Soc. Rev., 2012, 41: 3297 CrossRef PubMed Google Scholar

[5] D. W. Wood, P. M. Schulte, and S. Edition, Principles of Animal Physiology (Pearson Education Limited, New York, 1972), p. 1. Google Scholar

[6] Autumn K., Sitti M., Liang Y. A., Peattie A. M., Hansen W. R., Sponberg S., Kenny T. W., Fearing R., Israelachvili J. N., Full R. J.. Proc. Natl. Acad. Sci. USA, 2002, 99: 12252 CrossRef PubMed ADS Google Scholar

[7] Parker A. R., Lawrence C. R.. Nature, 2001, 414: 33 CrossRef PubMed Google Scholar

[8] Blossey R.. Nat. Mater., 2003, 2: 301 CrossRef PubMed ADS Google Scholar

[9] L. Ren, and Y. Liang, The Introduction of Bionics (Science Press, Beijing, 2016), p. 1. Google Scholar

[10] J. C. Wang, Harvey Lect. 81, 93 (1985). Google Scholar

[11] Falbo C.. College Math. J., 2005, 36: 123 CrossRef Google Scholar

[12] Chen H., Zhang P., Zhang L., Liu H., Jiang Y., Zhang D., Han Z., Jiang L.. Nature, 2016, 532: 85 CrossRef PubMed ADS Google Scholar

[13] Seok S., Onal C. D., Cho K. J., Wood R. J., Rus D., Kim S.. IEEE/ASME Trans. Mechatron., 2013, 18: 1485 CrossRef Google Scholar

[14] Schroeder T. B. H., Guha A., Lamoureux A., VanRenterghem G., Sept D., Shtein M., Yang J., Mayer M.. Nature, 2017, 552: 214 CrossRef PubMed ADS Google Scholar

[15] Neinhuis C., Barthlott W.. Ann. Bot., 1997, 79: 667 CrossRef Google Scholar

[16] Ensikat H. J., Ditsche-Kuru P., Neinhuis C., Barthlott W.. Beilstein J. Nanotechnol., 2011, 2: 152 CrossRef PubMed Google Scholar

[17] Autumn K., Dittmore A., Santos D., Spenko M., Cutkosky M.. J. Exp. Biol., 2006, 209: 3569 CrossRef PubMed Google Scholar

[18] Gao H., Wang X., Yao H., Gorb S., Arzt E.. Mech. Mater., 2005, 37: 275 CrossRef Google Scholar

[19] Wang C., Sim K., Chen J., Kim H., Rao Z., Li Y., Chen W., Song J., Verduzco R., Yu C.. Adv. Mater., 2018, 30: 1706695 CrossRef PubMed Google Scholar

[20] Wang W., Lee J. Y., Rodrigue H., Song S. H., Chu W. S., Ahn S. H.. Bioinspir. Biomim., 2014, 9: 046006 CrossRef PubMed ADS Google Scholar

[21] Jing Z., Qiao L., Pan H., Yang Y., Chen W.. Sci. China Inf. Sci., 2017, 60: 050201 CrossRef Google Scholar

[22] Guo Q., Dai E., Han X., Xie S., Chao E., Chen Z.. J. R. Soc. Interface, 2015, 12: 20150598 CrossRef PubMed Google Scholar

[23] Xu C., Stiubianu G. T., Gorodetsky A. A.. Science, 2018, 359: 1495 CrossRef PubMed ADS Google Scholar

[24] Vatankhah-Varnosfaderani M., Keith A. N., Cong Y., Liang H., Rosenthal M., Sztucki M., Clair C., Magonov S., Ivanov D. A., Dobrynin A. V., Sheiko S. S.. Science, 2018, 359: 1509 CrossRef PubMed ADS Google Scholar

[25] Wen R., Li Q., Wang W., Latour B., Li C. H., Li C., Lee Y. C., Yang R.. Nano Energy, 2017, 38: 59 CrossRef Google Scholar

[26] He H., Qiu C., Ye L., Cai X., Fan X., Ke M., Zhang F., Liu Z.. Nature, 2018, 560: 61 CrossRef PubMed ADS arXiv Google Scholar

[27] Kreder M. J., Alvarenga J., Kim P., Aizenberg J.. Nat. Rev. Mater., 2016, 1: 15003 CrossRef ADS Google Scholar

[28] Liu K., Jiang L.. Annu. Rev. Mater. Res., 2012, 42: 231 CrossRef ADS Google Scholar

[29] Bixler G. D., Bhushan B.. Soft Matter, 2012, 8: 11271 CrossRef ADS Google Scholar

[30] Li J., Hou Y., Liu Y., Hao C., Li M., Chaudhury M. K., Yao S., Wang Z.. Nat. Phys., 2016, 12: 606 CrossRef ADS Google Scholar

[31] Preston D. J., Mafra D. L., Miljkovic N., Kong J., Wang E. N.. Nano Lett., 2015, 15: 2902 CrossRef PubMed ADS Google Scholar

[32] Hao C., Liu Y., Chen X., Li J., Zhang M., Zhao Y., Wang Z.. Small, 2016, 12: 1825 CrossRef PubMed Google Scholar

[33] Pogodin S., Hasan J., Baulin V. A., Webb H. K., Truong Khanh V., Phong Nguyen T. H., Boshkovikj V., Fluke C. J., Watson G. S., Watson J. A., Crawford R. J., Ivanova E. P.. Biophys. J., 2013, 104: 835 CrossRef PubMed ADS Google Scholar

[34] Bixler G. D., Bhushan B.. Nanoscale, 2013, 5: 7685 CrossRef PubMed ADS Google Scholar

[35] Heo J., Kang T., Jang S. G., Hwang D. S., Spruell J. M., Killops K. L., Waite J. H., Hawker C. J.. J. Am. Chem. Soc., 2012, 134: 20139 CrossRef PubMed Google Scholar

[36] Ball P.. Nature, 1999, 400: 507 CrossRef ADS Google Scholar

[37] Xu W., Zhou X., Hao C., Zheng H., Liu Y., Yan X., Yang Z., Leung M., Zeng X. C., Xu R. X., Wang Z.. Natl. Sci. Rev., 2019, 6: 540 CrossRef ADS Google Scholar

[38] Liu N., Lin X., Zhang W., Cao Y., Chen Y., Feng L., Wei Y.. Sci. Rep., 2015, 5: 9688 CrossRef PubMed ADS Google Scholar

[39] Lu H., Zhang M., Yang Y., Huang Q., Fukuda T., Wang Z., Shen Y.. Nat. Commun., 2018, 9: 3944 CrossRef PubMed ADS Google Scholar

[40] Daniel S., Chaudhury M. K., Chen J. C.. Science, 2001, 291: 633 CrossRef PubMed ADS Google Scholar

[41] Bocquet L., Lauga E.. Nat. Mater., 2011, 10: 334 CrossRef PubMed ADS Google Scholar

[42] Vakarelski I. U., Patankar N. A., Marston J. O., Chan D. Y. C., Thoroddsen S. T.. Nature, 2012, 489: 274 CrossRef PubMed ADS Google Scholar

[43] Quéré D.. Annu. Rev. Fluid Mech., 2013, 45: 197 CrossRef ADS Google Scholar

[44] Burton J. C., Sharpe A. L., van der Veen R. C. A., Franco A., Nagel S. R.. Phys. Rev. Lett., 2012, 109: 74301 CrossRef PubMed ADS arXiv Google Scholar

[45] Rose J. W.. Proc. Instit. Mech. Eng. Part A, 2002, 216: 115 CrossRef Google Scholar

[46] Feng J., Qin Z., Yao S.. Langmuir, 2012, 28: 6067 CrossRef PubMed Google Scholar

[47] Boreyko J. B., Chen C. H.. Phys. Rev. Lett., 2009, 103: 184501 CrossRef PubMed ADS Google Scholar

[48] Chen X., Wu J., Ma R., Hua M., Koratkar N., Yao S., Wang Z.. Adv. Funct. Mater., 2011, 21: 4617 CrossRef Google Scholar

[49] Wen R., Lan Z., Peng B., Xu W., Yang R., Ma X.. ACS Appl. Mater. Interfaces, 2017, 9: 13770 CrossRef Google Scholar

[50] Mulroe M. D., Srijanto B. R., Ahmadi S. F., Collier C. P., Boreyko J. B.. ACS Nano, 2017, 11: 8499 CrossRef Google Scholar

[51] Lafuma A., Quéré D.. Nat. Mater., 2003, 2: 457 CrossRef PubMed ADS Google Scholar

[52] Rykaczewski K.. Langmuir, 2012, 28: 7720 CrossRef PubMed Google Scholar

[53] Mishchenko L., Khan M., Aizenberg J., Hatton B. D.. Adv. Funct. Mater., 2013, 23: 4577 CrossRef Google Scholar

[54] Varanasi K. K., Hsu M., Bhate N., Yang W., Deng T.. Appl. Phys. Lett., 2009, 95: 094101 CrossRef ADS Google Scholar

[55] Hou Y., Yu M., Chen X., Wang Z., Yao S.. ACS Nano, 2014, 9: 71 CrossRef PubMed Google Scholar

[56] Anand S., Paxson A. T., Dhiman R., Smith J. D., Varanasi K. K.. ACS Nano, 2012, 6: 10122 CrossRef PubMed Google Scholar

[57] Xiao R., Miljkovic N., Enright R., Wang E. N.. Sci. Rep., 2013, 3: 1988 CrossRef PubMed ADS Google Scholar

[58] Chu K. H., Enright R., Wang E. N.. Appl. Phys. Lett., 2012, 100: 241603 CrossRef ADS Google Scholar

[59] Kim D. E., Park S. C., Yu D. I., Kim M. H., Ahn H. S.. Appl. Phys. Lett., 2015, 107: 023903 CrossRef ADS Google Scholar

[60] Wen R., Ma X., Lee Y. C., Yang R.. Joule, 2018, 2: 2307 CrossRef Google Scholar

[61] Dhillon N. S., Buongiorno J., Varanasi K. K.. Nat. Commun., 2015, 6: 8247 CrossRef PubMed ADS Google Scholar

[62] Li C., Wang Z., Wang P. I., Peles Y., Koratkar N., Peterson G. P.. Small, 2008, 4: 1084 CrossRef PubMed Google Scholar

[63] Harirchian T., Garimella S. V.. Int. J. Heat Mass Transfer, 2008, 51: 3724 CrossRef Google Scholar

[64] Lee S., Mudawar I.. Int. J. Heat Mass Transfer, 2016, 97: 110 CrossRef Google Scholar

[65] Alam T., Li W., Yang F., Chang W., Li J., Wang Z., Khan J., Li C.. Int. J. Heat Mass Transfer, 2016, 101: 915 CrossRef Google Scholar

[66] Kandlikar S. G.. J. Heat Transfer, 2012, 134: 034001 CrossRef Google Scholar

[67] Zhu H., Guo Z., Liu W.. Chem. Commun., 2016, 52: 3863 CrossRef PubMed Google Scholar

[68] Zhang S., Huang J., Chen Z., Lai Y.. Small, 2017, 13: 1602992 CrossRef PubMed Google Scholar

[69] Wahlgren R. V.. Water Res., 2001, 35: 1 CrossRef Google Scholar

[70] Lee A., Moon M. W., Lim H., Kim W. D., Kim H. Y.. Langmuir, 2012, 28: 10183 CrossRef PubMed Google Scholar

[71] Park K. C., Chhatre S. S., Srinivasan S., Cohen R. E., McKinley G. H.. Langmuir, 2013, 29: 13269 CrossRef PubMed Google Scholar

[72] Kim H., Yang S., Rao S. R., Narayanan S., Kapustin E. A., Furukawa H., Umans A. S., Yaghi O. M., Wang E. N.. Science, 2017, 356: 430 CrossRef PubMed ADS Google Scholar

[73] Quéré D.. Annu. Rev. Mater. Res., 2008, 38: 71 CrossRef ADS Google Scholar

[74] Zheng Y., Bai H., Huang Z., Tian X., Nie F. Q., Zhao Y., Zhai J., Jiang L.. Nature, 2010, 463: 640 CrossRef PubMed ADS Google Scholar

[75] Roth-Nebelsick A., Ebner M., Miranda T., Gottschalk V., Voigt D., Gorb S., Stegmaier T., Sarsour J., Linke M., Konrad W.. J. R. Soc. Interface, 2012, 9: 1965 CrossRef PubMed Google Scholar

[76] Ebner M., Miranda T., Roth-Nebelsick A.. J. Arid Environ., 2011, 75: 524 CrossRef ADS Google Scholar

[77] Wang J., Liu F., Chen H., Chen D.. Appl. Phys. Lett., 2009, 95: 084104 CrossRef ADS Google Scholar

[78] Ju J., Bai H., Zheng Y., Zhao T., Fang R., Jiang L.. Nat. Commun., 2012, 3: 1247 CrossRef PubMed ADS Google Scholar

[79] Prakash M., Quéré D., Bush J. W. M.. Science, 2008, 320: 931 CrossRef PubMed ADS Google Scholar

[80] Bush J. W. M., Hu D. L.. Annu. Rev. Fluid Mech., 2006, 38: 339 CrossRef ADS Google Scholar

[81] Noblin X., Yang S., Dumais J.. J. Exp. Biol., 2009, 212: 2835 CrossRef PubMed Google Scholar

[82] Wang Q., Yao X., Liu H., Quéré D., Jiang L.. Proc. Natl. Acad. Sci. USA, 2015, 112: 9247 CrossRef PubMed ADS Google Scholar

[83] Li J., Li J., Sun J., Feng S., Wang Z.. Adv. Mater., 2019, 31: 1806501 CrossRef PubMed Google Scholar

[84] Dos Santos F. D., Ondarçuhu T.. Phys. Rev. Lett., 1995, 75: 2972 CrossRef PubMed ADS Google Scholar

[85] Linke H., Alemán B. J., Melling L. D., Taormina M. J., Francis M. J., Dow-Hygelund C. C., Narayanan V., Taylor R. P., Stout A.. Phys. Rev. Lett., 2006, 96: 154502 CrossRef PubMed ADS Google Scholar

[86] Lorenceau L., Qur D.. J. Fluid Mech., 2004, 510: 29 CrossRef ADS Google Scholar

[87] Sandre O., Gorre-Talini L., Ajdari A., Prost J., Silberzan P.. Phys. Rev. E, 1999, 60: 2964 CrossRef PubMed ADS Google Scholar

[88] Grzybowski B. A., Stone H. A., Whitesides G. M.. Nature, 2000, 405: 1033 CrossRef PubMed Google Scholar

[89] Ichimura K., Oh S. K., Nakagawa M.. Science, 2000, 288: 1624 CrossRef PubMed ADS Google Scholar

[90] Pollack M. G., Shenderov A. D., Fair R. B.. Lab Chip, 2002, 2: 96 CrossRef PubMed Google Scholar

[91] Mugele F., Baret J. C.. J. Phys.-Condens. Matter, 2005, 17: R705 CrossRef ADS Google Scholar

[92] Malvadkar N. A., Hancock M. J., Sekeroglu K., Dressick W. J., Demirel M. C.. Nat. Mater., 2010, 9: 1023 CrossRef PubMed ADS Google Scholar

[93] Xue Y., Markmann J., Duan H., Weissmüller J., Huber P.. Nat. Commun., 2014, 5: 4237 CrossRef PubMed ADS arXiv Google Scholar

[94] Chaudhury M. K., Chakrabarti A., Daniel S.. Langmuir, 2015, 31: 9266 CrossRef PubMed Google Scholar

[95] Lv J. A., Liu Y., Wei J., Chen E., Qin L., Yu Y.. Nature, 2016, 537: 179 CrossRef PubMed ADS Google Scholar

[96] Kwon G., Panchanathan D., Mahmoudi S. R., Gondal M. A., McKinley G. H., Varanasi K. K.. Nat. Commun., 2017, 8: 14968 CrossRef PubMed ADS Google Scholar

[97] Ju J., Xiao K., Yao X., Bai H., Jiang L.. Adv. Mater., 2013, 25: 5937 CrossRef PubMed Google Scholar

[98] Tian X., Chen Y., Zheng Y., Bai H., Jiang L.. Adv. Mater., 2011, 23: 5486 CrossRef PubMed Google Scholar

[99] Dong H., Wang N., Wang L., Bai H., Wu J., Zheng Y., Zhao Y., Jiang L.. ChemPhysChem, 2012, 13: 1153 CrossRef PubMed Google Scholar

[100] Bai H., Sun R., Ju J., Yao X., Zheng Y., Jiang L.. Small, 2011, 7: 3429 CrossRef PubMed Google Scholar

[101] Bai H., Tian X., Zheng Y., Ju J., Zhao Y., Jiang L.. Adv. Mater., 2010, 22: 5521 CrossRef PubMed Google Scholar

[102] He X. H., Wang W., Liu Y. M., Jiang M. Y., Wu F., Deng K., Liu Z., Ju X. J., Xie R., Chu L. Y.. ACS Appl. Mater. Interfaces, 2015, 7: 17471 CrossRef Google Scholar

[103] Heng X., Xiang M., Lu Z., Luo C.. ACS Appl. Mater. Interfaces, 2014, 6: 8032 CrossRef PubMed Google Scholar

[104] Cao M., Ju J., Li K., Dou S., Liu K., Jiang L.. Adv. Funct. Mater., 2014, 24: 3235 CrossRef Google Scholar

[105] Yu A., Chen X., Wang R., Liu J., Luo J., Chen L., Zhang Y., Wu W., Liu C., Yuan H., Peng M., Hu W., Zhai J., Wang Z. L.. ACS Nano, 2016, 10: 3944 CrossRef Google Scholar

[106] Fan F. R., Lin L., Zhu G., Wu W., Zhang R., Wang Z. L.. Nano Lett., 2012, 12: 3109 CrossRef PubMed ADS Google Scholar

[107] Wang J., Wu C., Dai Y., Zhao Z., Wang A., Zhang T., Wang Z. L.. Nat. Commun., 2017, 8: 88 CrossRef PubMed ADS Google Scholar

[108] Fan F. R., Tian Z. Q., L. Wang Z.. Nano Energy, 2012, 1: 328 CrossRef Google Scholar

[109] Khan U., Kim S. W.. ACS Nano, 2016, 10: 6429 CrossRef Google Scholar

[110] Wang Z. L., Chen J., Lin L.. Energy Environ. Sci., 2015, 8: 2250 CrossRef Google Scholar

[111] Niu S., Liu Y., Wang S., Lin L., Zhou Y. S., Hu Y., Wang Z. L.. Adv. Funct. Mater., 2014, 24: 3332 CrossRef Google Scholar

[112] Niu S., Wang S., Lin L., Liu Y., Zhou Y. S., Hu Y., Wang Z. L.. Energy Environ. Sci., 2013, 6: 3576 CrossRef Google Scholar

[113] Lee K. Y., Chun J., Lee J. H., Kim K. N., Kang N. R., Kim J. Y., Kim M. H., Shin K. S., Gupta M. K., Baik J. M., Kim S. W.. Adv. Mater., 2014, 26: 5037 CrossRef PubMed Google Scholar

[114] Jin S., Wang Y., Motlag M., Gao S., Xu J., Nian Q., Wu W., Cheng G. J.. Adv. Mater., 2018, 30: 1705840 CrossRef PubMed Google Scholar

[115] Xiong J., Lin M. F., Wang J., Gaw S. L., Parida K., Lee P. S.. Adv. Energy Mater., 2017, 7: 1701243 CrossRef Google Scholar

[116] Baytekin H. T., Patashinski A. Z., Branicki M., Baytekin B., Soh S., Grzybowski B. A.. Science, 2011, 333: 308 CrossRef PubMed ADS Google Scholar

[117] Liu J., Tang W., Meng X., Zhan L., Xu W., Nie Z., Wang Z.. ACS Omega, 2018, 3: 12229 CrossRef Google Scholar

[118] Li C., Yin Y., Wang B., Zhou T., Wang J., Luo J., Tang W., Cao R., Yuan Z., Li N., Du X., Wang C., Zhao S., Liu Y., Wang Z. L.. ACS Nano, 2017, 11: 10439 CrossRef Google Scholar

[119] Liu Y., Moevius L., Xu X., Qian T., Yeomans J. M., Wang Z.. Nat. Phys., 2014, 10: 515 CrossRef PubMed ADS arXiv Google Scholar

[120] Clanet C., Béguin C., Richard D., Quéré D.. J. Fluid Mech., 2004, 517: 199 CrossRef ADS Google Scholar

[121] Tian X., Verho T., Ras R. H. A.. Science, 2016, 352: 142 CrossRef PubMed ADS Google Scholar

[122] Moulinet S., Bartolo D.. Eur. Phys. J. E, 2007, 24: 251 CrossRef PubMed ADS Google Scholar

[123] Amini S., Kolle S., Petrone L., Ahanotu O., Sunny S., Sutanto C. N., Hoon S., Cohen L., Weaver J. C., Aizenberg J., Vogel N., Miserez A.. Science, 2017, 357: 668 CrossRef PubMed ADS Google Scholar

[124] Choi D., Kim D. W., Yoo D., Cha K. J., La M., Kim D. S.. Nano Energy, 2017, 36: 250 CrossRef Google Scholar

[125] Wong T. S., Kang S. H., Tang S. K. Y., Smythe E. J., Hatton B. D., Grinthal A., Aizenberg J.. Nature, 2011, 477: 443 CrossRef PubMed ADS Google Scholar

[126] Kim P., Wong T. S., Alvarenga J., Kreder M. J., Adorno-Martinez W. E., Aizenberg J.. ACS Nano, 2012, 6: 6569 CrossRef PubMed Google Scholar

[127] Rykaczewski K., Anand S., Subramanyam S. B., Varanasi K. K.. Langmuir, 2013, 29: 5230 CrossRef PubMed Google Scholar

[128] Jelle B. P.. Energy Buildings, 2013, 67: 334 CrossRef Google Scholar

[129] He Z., Liu K., Wang J.. Acc. Chem. Res., 2018, 51: 1082 CrossRef PubMed Google Scholar

[130] Kulinich S. A., Farhadi S., Nose K., Du X. W.. Langmuir, 2011, 27: 25 CrossRef PubMed Google Scholar

[131] Guo P., Zheng Y., Wen M., Song C., Lin Y., Jiang L.. Adv. Mater., 2012, 24: 2642 CrossRef PubMed Google Scholar

[132] Boreyko J. B., Collier C. P.. ACS Nano, 2013, 7: 1618 CrossRef PubMed Google Scholar

[133] Chen X., Ma R., Zhou H., Zhou X., Che L., Yao S., Wang Z.. Sci. Rep., 2013, 3: 2515 CrossRef PubMed ADS Google Scholar

[134] Lv J., Song Y., Jiang L., Wang J.. ACS Nano, 2014, 8: 3152 CrossRef PubMed Google Scholar

[135] Miljkovic N., Enright R., Nam Y., Lopez K., Dou N., Sack J., Wang E. N.. Nano Lett., 2012, 13: 179 CrossRef PubMed ADS Google Scholar

[136] Cao L., Jones A. K., Sikka V. K., Wu J., Gao D.. Langmuir, 2009, 25: 12444 CrossRef PubMed Google Scholar

[137] Wilson P. W., Lu W., Xu H., Kim P., Kreder M. J., Alvarenga J., Aizenberg J.. Phys. Chem. Chem. Phys., 2013, 15: 581 CrossRef PubMed ADS Google Scholar

[138] Sett S., Yan X., Barac G., Bolton L. W., Miljkovic N.. ACS Appl. Mater. Interfaces, 2017, 9: 36400 CrossRef Google Scholar

[139] Chen J., Dou R., Cui D., Zhang Q., Zhang Y., Xu F., Zhou X., Wang J., Song Y., Jiang L.. ACS Appl. Mater. Interfaces, 2013, 5: 4026 CrossRef PubMed Google Scholar

[140] Smith J. D., Dhiman R., Anand S., Reza-Garduno E., Cohen R. E., McKinley G. H., Varanasi K. K.. Soft Matter, 2013, 9: 1772 CrossRef ADS Google Scholar

[141] Subramanyam S. B., Rykaczewski K., Varanasi K. K.. Langmuir, 2013, 29: 13414 CrossRef PubMed Google Scholar

[142] Nine M. J., Tung T. T., Alotaibi F., Tran D. N. H., Losic D.. ACS Appl. Mater. Interfaces, 2017, 9: 8393 CrossRef Google Scholar

[143] Howell C., Vu T. L., Johnson C. P., Hou X., Ahanotu O., Alvarenga J., Leslie D. C., Uzun O., Waterhouse A., Kim P., Super M., Aizenberg M., Ingber D. E., Aizenberg J.. Chem. Mater., 2015, 27: 1792 CrossRef Google Scholar

[144] Eisenhaure J., Kim S.. Micromachines, 2017, 8: 125 CrossRef Google Scholar

[145] Yang J., Bai R., Suo Z.. Adv. Mater., 2018, 30: 1800671 CrossRef PubMed Google Scholar

[146] Baik S., Lee H. J., Kim D. W., Kim J. W., Lee Y., Pang C.. Adv. Mater., 2019, 405: 1803309 CrossRef PubMed Google Scholar

[147] Singla S., Amarpuri G., Dhopatkar N., Blackledge T. A., Dhinojwala A.. Nat. Commun., 2018, 9: 1890 CrossRef PubMed ADS Google Scholar

[148] Kim T. W., Bhushan B.. Ultramicroscopy, 2007, 107: 902 CrossRef PubMed Google Scholar

[149] Jeong H. E., Lee J. K., Kim H. N., Heup Moon S., Suh K. Y.. Proc. Natl. Acad. Sci. USA, 2009, 106: 5639 CrossRef PubMed ADS Google Scholar

[150] Lee D. Y., Lee D. H., Lee S. G., Cho K.. Soft Matter, 2012, 8: 4905 CrossRef ADS Google Scholar

[151] Im H. S., Kim J. U., Han S., Kim T. I.. Polymers, 2016, 8: 326 CrossRef PubMed Google Scholar

[152] Liu J., Scherman O. A.. Adv. Funct. Mater., 2018, 28: 1800848 CrossRef Google Scholar

[153] Qin Z., Buehler M. J.. J. Mech. Phys. Solids, 2014, 62: 19 CrossRef ADS Google Scholar

[154] Zhao Y., Wu Y., Wang L., Zhang M., Chen X., Liu M., Fan J., Liu J., Zhou F., Wang Z.. Nat. Commun., 2017, 8: 2218 CrossRef PubMed ADS Google Scholar

[155] Ju G., Cheng M., Guo F., Zhang Q., Shi F.. Angew. Chem. Int. Ed., 2018, 57: 8963 CrossRef PubMed Google Scholar

[156] Palagi S., Fischer P.. Nat. Rev. Mater., 2018, 3: 113 CrossRef ADS Google Scholar

[157] Bartlett N. W., Tolley M. T., Overvelde J. T. B., Weaver J. C., Mosadegh B., Bertoldi K., Whitesides G. M., Wood R. J.. Science, 2015, 349: 161 CrossRef PubMed ADS Google Scholar

[158] Ghosh A., Fischer P.. Nano Lett., 2009, 9: 2243 CrossRef PubMed ADS Google Scholar

[159] Li J., Sattayasamitsathit S., Dong R., Gao W., Tam R., Feng X., Ai S., Wang J.. Nanoscale, 2014, 6: 9415 CrossRef PubMed ADS Google Scholar

[160] Li S., Batra R., Brown D., Chang H. D., Ranganathan N., Hoberman C., Rus D., Lipson H.. Nature, 2019, 567: 361 CrossRef PubMed ADS Google Scholar

[161] Kim Y., Yuk H., Zhao R., Chester S. A., Zhao X.. Nature, 2018, 558: 274 CrossRef PubMed ADS Google Scholar

[162] Shepherd R. F., Ilievski F., Choi W., Morin S. A., Stokes A. A., Mazzeo A. D., Chen X., Wang M., Whitesides G. M.. Proc. Natl. Acad. Sci. USA, 2011, 108: 20400 CrossRef PubMed ADS Google Scholar

[163] Shin B., Ha J., Lee M., Park K., Park G. H., Choi T. H., Cho K. J., Kim H. Y.. Sci. Robot., 2018, 3: eaar2629 CrossRef Google Scholar

[164] Connolly F., Walsh C. J., Bertoldi K.. Proc. Natl. Acad. Sci. USA, 2017, 114: 51 CrossRef PubMed ADS Google Scholar

[165] Rus D., Tolley M. T.. Nature, 2015, 521: 467 CrossRef PubMed ADS Google Scholar

[166] Wehner M., Truby R. L., Fitzgerald D. J., Mosadegh B., Whitesides G. M., Lewis J. A., Wood R. J.. Nature, 2016, 536: 451 CrossRef PubMed ADS Google Scholar

[167] Ilievski F., Mazzeo A. D., Shepherd R. F., Chen X., Whitesides G. M.. Angew. Chem. Int. Ed., 2011, 50: 1890 CrossRef PubMed Google Scholar

[168] Brown E., Rodenberg N., Amend J., Mozeika A., Steltz E., Zakin M. R., Lipson H., Jaeger H. M.. Proc. Natl. Acad. Sci. USA, 2010, 107: 18809 CrossRef ADS arXiv Google Scholar

[169] Homberg B. S., Katzschmann R. K., Dogar M. R., Rus D.. Auton Robot, 2019, 43: 681 CrossRef Google Scholar

[170] Must I., Sinibaldi E., Mazzolai B.. Nat. Commun., 2019, 10: 344 CrossRef PubMed ADS Google Scholar

[171] Wang J., Lin M. F., Park S., Lee P. S.. Mater. Today, 2018, 21: 508 CrossRef Google Scholar

[172] Chou H. H., Nguyen A., Chortos A., To J. W. F., Lu C., Mei J., Kurosawa T., Bae W. G., Tok J. B. H., Bao Z.. Nat. Commun., 2015, 6: 8011 CrossRef PubMed ADS Google Scholar

[173] Boutry C. M., Negre M., Jorda M., Vardoulis O., Chortos A., Khatib O., Bao Z.. Sci. Robot., 2018, 3: eaau6914 CrossRef Google Scholar

[174] H. Zhao, K. O’Brien, S. Li, R. F. Shepherd, Sci. Robot. 1, eaai7529 (2016). Google Scholar

  • Figure 1

    (Color online) Nature’s principles evolved by organisms that feature multi-functionality, bottom-up construction processes, self-renewability, heterogeneity, communication and environmental adaptability through utilizing life-friendly chemistry, exploiting excellent materials/efficient energy, harnessing cooperative interactions, and dynamically adapting/connecting to the operating conditions as well as their living circumstances.

  • Figure 2

    (Color online) Key elements of nature-inspired engineering. Biomimicry cycle is driven by practical need and consists of three key elements: natural samples, biomimicry and synthetic production.

  • Figure 3

    (Color online) Representative natural surfaces, hierarchical structure as well as corresponding functionality. (a) The self-cleaning ability of lotus leaves [16]. (b) The slippery liquid-infused porous surface of a pitcher plant [12]. (c) The water harvesting capability of a desert beetle [7]. (d) The hydrostatic actuation of a caterpillar [21]. (e) The reversible adhesion mechanism of a gecko’s climbing feet [18]. (f) The power generation of an electric eel [14].

  • Figure 4

    (Color online) Various functions and unique functionalities based on nature-inspired designs of surface topography: boiling heat transfer [30], condensation [31], water harvest [7], anti-icing [32], anti-bacterial [33], anti-fouling [34], self-cleaning [16], wet adhesion [35], drag reduction [36], power generation [37], liquid separation [38], and soft robotics [39].

  • Figure 5

    (Color online) Nature-inspired designs of surface topography for thermal-fluid engineering. (a) Enhanced condensation heat transfer on hierarchical surface [48]. (b) Enhanced condensation heat transfer on microscale surface [49]. (c) Enhanced condensation heat transfer on nanoscale surface [50]. (d) Enhanced boiling heat transfer on hierarchical surface [60,61]. (e) Enhanced boiling heat transfer on microscale surface [58]. (f) Enhanced boiling heat transfer on nanoscale surface [62].

  • Figure 6

    (Color online) Natural and nature-inspired designs of surface topography for droplet directional transportation for water harvesting [83].

  • Figure 7

    (Color online) The schematic diagram of the fabrication processes and mechanisms of three typical triboelectric nanogenerators. (a) Solid/liquid interfaced-based SHS-TENG [114]. (b) Solid/solid interface-based ordinary-TENG [118]. (c) Liquid/liquid interface-based SLIPS-TENG [37].

  • Figure 8

    (Color online) Nature-inspired adhesion. (a) 1D-soft and rigid structure for strong adhesion [144]. (b) Hierarchical structure for reliable adhesion [148]. (c) Slanted fibrillar array offers great opportunity to gain anisotropy adhesion respectively in directions following and against the tilting direction of the fibrils when subjected to shear force [151]. (d) Robust adhesives through topological entanglement [145]. (e) On-demand responsive wet adhesive [154]. (f) Fast reactive wet adhesive [155].

  • Figure 9

    (Color online) Nature-inspired topological soft robotics. (a) Locomotion [39,158,160]; (b) actuation [161,165,166]; (c) manipulation [165,169,170]; (d) application [39,171,172].

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号