Single-GaSb-nanowire-based room temperature photodetectors with broad spectral response

More info
  • ReceivedOct 10, 2014
  • AcceptedNov 11, 2014
  • PublishedDec 17, 2014


Single-gallium antimonide (GaSb)-nanowire-based photodetectors were fabricated on both rigid SiO2/Si substrate and flexible polyethylene terephthalate (PET) substrates, both of which exhibited high responsivity, fast-response, and long-term stability in photoswitching over a broad spectral range from ultraviolet to near infrared. Besides, the as-fabricated rigid device exhibited high responsivity of 7,350 A/W under illumination of λ = 350 nm and light intensity P = 0.2 mW/cm2, while the flexible device displays higher detectivity of 9.67 × 109 jones at 700 nm than the rigid one and lower noise equivalent power (NEP, \( {\text{NEP}}_{{700\;{\text{nm}}}}^{*} \) = 2.0 × 10−12 W/Hz1/2) for the much lower dark current on PET. The high responsivity, broad spectral detection from ultraviolet to near-infrared and long-term stability make GaSb nanowire one of the most important candidates to construct advanced optical sensors or other optoelectronic devices.


[1] Konstantatos G, Clifford J, Levina L et al (2007) Sensitive solution-processed visible-wavelength photodetector. Nat Photonics 1:531-534. CrossRef Google Scholar

[2] Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693-3723. CrossRef Google Scholar

[3] Gong X, Tong M, Xia Y et al (2009) High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325:1665-1667. CrossRef Google Scholar

[4] Konstantatos G, Howard I, Fischer A et al (2006) Ultrasensitive solution-cast quantum dot photodetectors. Nature 442:180-183. CrossRef Google Scholar

[5] Levine BF (1993) Quantum-well infrared photodetectors. J Appl Phys 74:R1-R18. CrossRef Google Scholar

[6] Svensson J, Anttu N, Vainorius B et al (2013) Diameter-dependent photocurrent in InAsSb nanowire infrared photodetectors. Nano Lett 13:1380-1385. Google Scholar

[7] Soci C, Zhang A, Xiang B et al (2007) ZnO nanowire UV photodetectors with high internal gain. Nano Lett 7:1003-1009. CrossRef Google Scholar

[8] Li H, Wang X, Xu J et al (2013) One-dimensional CdS nanostructures: a promising candidate for optoelectronics. Adv Mater 25:3017-3037. CrossRef Google Scholar

[9] Hagglund C, Zeltzer G, Ruiz R et al (2013) Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption. Nano Lett 13:3352-3357. CrossRef Google Scholar

[10] Jie J, Zhang W, Bello I et al (2010) One-dimensional II-VI nanostructures: synthesis, properties and optoelectronic applications. Nano Today 5:313-336. CrossRef Google Scholar

[11] Kim C, Kurosaki K, Muta H et al (2012) Thermoelectric properties of Zn-doped GaSb. J Appl Phys 111:043704. CrossRef Google Scholar

[12] Lee H, Huang H, Lee C et al (2012) Investigation of photoelectrochemical-oxidized p-GaSb films. Appl Phys Lett 101:251604. CrossRef Google Scholar

[13] Komarov F, Vlasukova L, Milchanin O et al (2012) Structure and optical properties of silicon layers with GaSb nanocrystals created by ion-beam synthesis. Phys Status Solidi A Appl Mater Sci 209:148-152. CrossRef Google Scholar

[14] Plis EA, Kutty MN, Myers S et al (2012) Performance improvement of long-wave infrared InAs/GaSb strained-layer superlattice detectors through sulfur-based passivation. Infrared Phys Technol 55:216-219. CrossRef Google Scholar

[15] Jeppsson M, Dick KA, Nilsson HA et al (2008) Characterization of GaSb nanowires grown by MOVPE. J Cryst Growth 310:5119-5122. CrossRef Google Scholar

[16] Burke RA, Weng X, Kuo M et al (2010) Growth and characterization of unintentionally doped GaSb nanowires. J Electron Mater 39:355-364. CrossRef Google Scholar

[17] Zi Y, Zhao Y, Candebat D et al (2012) Synthesis of antimony-based nanowires using the simple vapor deposition method. ChemPhysChem 13:2585-2588. CrossRef Google Scholar

[18] Kirschman RK (1990) Low-temperature electronics. IEEE Circuits Dev Mag 6:12-14. CrossRef Google Scholar

[19] Dutta PS, Bhat HL, Kumar V (1997) The physics and technology of gallium antimonide: an emerging optoelectronic material. J Appl Phys 81:5821-5870. CrossRef Google Scholar

[20] Li C, Bando Y, Liao M et al (2010) Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire. Appl Phys Lett 97:161102. CrossRef Google Scholar

[21] Liu Z, Liang B, Chen G et al (2012) Contact printing of horizontally aligned Zn2GeO4 and In2Ge2O7 nanowire arrays for multi-channel field-effect transistors and their photoresponse performances. J Mater Chem C 1:131-137. CrossRef Google Scholar

[22] Chen G, Liang B, Liu X et al (2014) High-performance hybrid phenyl-C61-butyric acid methyl ester/Cd3P2 nanowire ultraviolet-visible-near infrared photodetectors. ACS Nano 8:787-796. CrossRef Google Scholar

[23] Liu Z, Chen G, Liang B et al (2013) Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors. Opt Express 21:7799-7810. CrossRef Google Scholar

[24] Hu P, Wang L, Yoon M et al (2013) Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett 13:1649-1654. Google Scholar

[25] Liu Z, Xu J, Chen D et al (2014) Flexible electronics based on inorganic nanowires. Chem Soc Rev. doi:10.1039/C4CS00116H. Google Scholar

[26] Wang X, Liu B, Liu R et al (2014) Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew Chem Int Ed 53:1849-1853. CrossRef Google Scholar

[27] Wang X, Lu XH, Liu B et al (2014) Flexible energy-storage devices: design consideration and recent progress. Adv Mater 26:4763-4782. CrossRef Google Scholar

[28] Liu B, Zhang J, Wang XF et al (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005-3011. CrossRef Google Scholar

[29] Wang XF, Liu B, Wang QF et al (2013) Three-dimensional hierarchical GeSe2 nanostructures for high performance flexible all-solid-state supercapacitors. Adv Mater 25:1479-1486. CrossRef Google Scholar

[30] Alabedra R, Rigaud D (2009) Noise in photodiodes and photoreceiver systems. In: Decoster HJ, Harari H (eds) Optelectronic sensors. Wiley-ISTE, New York, pp 224-268. Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号