In situ carrier tuning in high temperature superconductor \(\hbox {Bi}_2\hbox {Sr}_2\hbox {CaCu}_2\hbox {O}_{8+{\delta} }\) by potassium deposition

More info
  • ReceivedApr 22, 2016
  • AcceptedMay 10, 2016
  • PublishedMay 30, 2016


We report a successful tuning of the hole doping level over a wide range in high temperature superconductor \(\hbox {Bi}_2\hbox {Sr}_2\hbox {CaCu}_2\hbox {O}_{8+\delta }\) (Bi2212) through successive in situ potassium (K) deposition. By taking high resolution angle-resolved photoemission measurements on the Fermi surface and band structure of an overdoped Bi2212 (\(T_\mathrm{c}=76\) K) at different stages of K deposition, we found that the area of the hole-like Fermi surface around the Brillouin zone corner (\(\pi \),\(\pi \)) shrinks with increasing K deposition. This indicates a continuous hole concentration change from initial \(\sim \)0.26 to eventual 0.09 after extensive K deposition, a net doping level change of 0.17 that makes it possible to bring Bi2212 from being originally overdoped, to optimally-doped, and eventually becoming heavily underdoped. The electronic behaviors with K deposition are consistent with those of Bi2212 samples with different hole doping levels. These results demonstrate that K deposition is an effective way of in situ controlling the hole concentration in Bi2212. This work opens a good way of studying the doping evolution of electronic structure and establishing the electronic phase diagram in Bi2212 that can be extended to other cuprate superconductors.


[1] Bednorz JG, Müller KA (1986) Possible high \(T_{{\rm c}}\) superconductivity in the Ba-La-Cu-O system. Z Phys B 64:189-193. CrossRef Google Scholar

[2] Lee PA, Nagaosa N, Wen XG (2006) Doping a Mott insulator: physics of high-temperature superconductivity. Rev Mod Phys 78:17. CrossRef Google Scholar

[3] Damascelli A, Hussain Z, Shen ZX (2003) Angle-resolved photoemission studies of the cuprate superconductors. Rev Mod Phys 75:473. CrossRef Google Scholar

[4] Campuzano JC, Norman MR, Randeria M (2004) Photoemission in the high-\(T_{{\rm c}}\) superconductors. Phys Supercond (Springer, Berlin) 2:167-273. CrossRef Google Scholar

[5] Zhou XJ, Cuk T, Devereaux T et al (2007) Angle-resolved photoemission spectroscopy on electronic structure and electron-phonon coupling in cuprate superconductors. In: Handbook of high-temperature superconductivity: theory and experiment, vol 3. Springer, New York, pp 87-144. Google Scholar

[6] Fischer Ø, Kugler M, Aprile IM et al (2007) Scanning tunneling spectroscopy of high-temperature superconductors. Rev Mod Phys 79:353. CrossRef Google Scholar

[7] Ruan W, Tang PZ, Fang AF et al (2015) Structural phase transition and electronic structure evolution in Ir\(_{1-x}\)Pt\(_{x}\)Te\(_2\) studied by scanning tunneling microscopy. Sci Bull 60:798-805. CrossRef Google Scholar

[8] Shen ZX, Dessau DS, Wells BO et al (1993) Anomalously large gap anisotropy in the \(a-b\) plane of \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}\). Phys Rev Lett 70:1553. CrossRef Google Scholar

[9] Ding H, Norman MR, Campuzano JC et al (1996) Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy in \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+x}\). Phys Rev B 54:R9678(R). CrossRef Google Scholar

[10] Loeser AG, Shen ZX, Dessau DS et al (1996) Excitation gap in the normal state of underdoped \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta }\). Science 273:325-329. CrossRef Google Scholar

[11] Ding H, Yokoya T, Campuzano JC et al (1996) Spectroscopic evidence for a pseudogap in the normal state of underdoped high-\(T_{{\rm c}}\) superconductors. Nature 382:51-54. CrossRef Google Scholar

[12] Bogdanov PV, Lanzara A, Kellar SA et al (2000) Evidence for an energy scale for quasiparticle dispersion in \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_8\). Phys Rev Lett 85:2581. CrossRef Google Scholar

[13] Johnson PD, Valla T, Fedorov AV et al (2001) Doping and temperature dependence of the mass enhancement observed in the cuprate \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}\). Phys Rev Lett 87:177007. CrossRef Google Scholar

[14] Kaminski A, Randeria M, Campuzano JC et al (2001) Renormalization of spectral line shape and dispersion below \(T_{{\rm c}}\) in \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}\). Phys Rev Lett 86:1070. CrossRef Google Scholar

[15] Lanzara A, Bogdanov PV, Zhou XJ et al (2001) Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 412:510-514. CrossRef Google Scholar

[16] Zhang WT, Liu GD, Zhao L et al (2008) Identification of a new form of electron coupling in the \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_8\) superconductor by laser-based angle-resolved photoemission spectroscopy. Phys Rev Lett 100:107002. CrossRef Google Scholar

[17] Bok JM, Bae JJ, Choi HY et al (2016) Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates. Sci Adv 2:e1501329. CrossRef Google Scholar

[18] Chatterjee U, Ai DF, Zhao JJ et al (2011) Electronic phase diagram of high-temperature copper oxide superconductors. Proc Natl Acad Sci 108:9346-9349. CrossRef Google Scholar

[19] Vishik IM, Hashimoto M, He RH et al (2012) Phase competition in trisected superconducting dome. Proc Natl Acad Sci USA 109:18332-18337. CrossRef Google Scholar

[20] Sun XF, Ono S, Zhao X et al (2008) Doping dependence of phonon and quasiparticle heat transport of pure and Dy-doped \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta }\) single crystals. Phys Rev B 77:094515. CrossRef Google Scholar

[21] Hossain MA, Mottershead JDF, Fournier D et al (2008) In situ doping control of the surface of high-temperature superconductors. Nat Phys 4:527-531. CrossRef Google Scholar

[22] Liu GD, Wang GL, Zhu Y et al (2008) Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV. Rev Sci Instrum 79:023105. CrossRef Google Scholar

[23] Wen JS, Xu ZJ, Xu GY et al (2008) Large Bi2212 single crystal growth by the floating-zone technique. J Crystal Growth 310:1401-1404. CrossRef Google Scholar

[24] Aebi P, Osterwalder J, Schwaller P et al (1994) Complete Fermi surface mapping of \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+x}\)(001): Coexistence of short range antiferromagnetic correlations and metallicity in the same phase. Phys Rev Lett 72:2757. CrossRef Google Scholar

[25] Feng DL, Armitage NP, Lu DH et al (2001) Bilayer splitting in the electronic structure of heavily overdoped \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta }\). Phys Rev Lett 86:5550. CrossRef Google Scholar

[26] Bogdanov PV, Lanzara A, Zhou XJ et al (2001) Photoemission study of Pb doped \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_8\): a Fermi surface picture. Phys Rev B 64:180505(R). CrossRef Google Scholar

[27] Saini NL, Avila J, Bianconi A et al (1997) Topology of the pseudogap and shadow bands in \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}\) at optimum doping. Phys Rev Lett 79:3467. CrossRef Google Scholar

[28] Borisenko SV, Golden MS, Legner S et al (2000) Joys and pitfalls of Fermi surface mapping in \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}\) using angle resolved photoemission. Phys Rev Lett 84:4453. CrossRef Google Scholar

[29] Markiewicz RS, Sahrakorpi S, Lindroos M et al (2005) One-band tight-binding model parametrization of the high-\(T_{{\rm c}}\) cuprates including the effect of \(k_z\) dispersion. Phys Rev B 72:054519. CrossRef Google Scholar

[30] Zhou XJ, Yoshida T, Lee DH et al (2004) Dichotomy between nodal and antinodal quasiparticles in underdoped \((\text{La}_{2-x}\text{Sr}_x)\text{CuO}_4\) superconductors. Phys Rev Lett 92:187001. CrossRef Google Scholar

[31] Shen KM, Ronning F, Lu DH et al (2005) Nodal quasiparticles and antinodal charge ordering in \(\text{Ca}_{2-x}\text{Na}_x\text{CuO}_2\text{Cl}_2\). Science 307:901-904. CrossRef Google Scholar

[32] Zhou XJ, Yoshida T, Lanzara A et al (2003) High-temperature superconductors: universal nodal Fermi velocity. Nature 423:398. CrossRef Google Scholar

[33] Vishik IM, Nowadnick EA, Lee WS et al (2009) A momentum-dependent perspective on quasiparticle interference in \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}\). Nat Phys 5:718-721. CrossRef Google Scholar

[34] Feng DL, Lu DH, Shen KM et al (2000) Signature of superfluid density in the single-particle excitation spectrum of \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}\). Science 289:277-281. CrossRef Google Scholar

[35] Li ZX, Wang F, Yao H et al (2016) What makes the \(T_{{\rm c}}\) of monolayer FeSe on \(\text{SrTiO}_3\) so high: A sign-problem-free quantum Monte Carlo study. Sci Bull 61:925-930. CrossRef Google Scholar

[36] Hu JP (2016) Identifying the genes of unconventional high temperature superconductors. Sci Bull 61:561-569. CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有