Distributed secure quantum machine learning

More info
  • ReceivedMay 15, 2017
  • AcceptedJun 20, 2017
  • PublishedJun 27, 2017


Distributed secure quantum machine learning (DSQML) enables a classical client with little quantum technology to delegate a remote quantum machine learning to the quantum server with the privacy data preserved. Moreover, DSQML can be extended to a more general case that the client does not have enough data, and resorts both the remote quantum server and remote databases to perform the secure machine learning. Here we propose a DSQML protocol that the client can classify two-dimensional vectors to different clusters, resorting to a remote small-scale photon quantum computation processor. The protocol is secure without leaking any relevant information to the Eve. Any eavesdropper who attempts to intercept and disturb the learning process can be noticed. In principle, this protocol can be used to classify high dimensional vectors and may provide a new viewpoint and application for future "big data".


[1] C.H. Bennett, G. Brassard, C. Crepeau, et al.Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 70 (1993), pp. 1895-1899. Google Scholar

[2] T.C. Li, Z.Q. YinQuantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci Bull, 61 (2016), pp. 163-171. Google Scholar

[3] Q. AiToward quantum teleporting living objects. Sci Bull, 61 (2016), pp. 110-111. Google Scholar

[4] A.K. EkertQuantum cryptography based on Bell's theorem. Phys Rev Lett, 67 (1991), pp. 661-663. Google Scholar

[5] C.M. Zhang, M. Li, Z.Q. Yin, et al.Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci China Phys Mech Astron, 58 (2015), p. 590301. Google Scholar

[6] G.L. Long, X.S. LiuTheoretically efficient high-capacity quantumkeydistribution scheme. Phys Rev A, 65 (2002), p. 032302. Google Scholar

[7] F.G. Deng, G.L. Long, X.S. LiuTwo-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 68 (2003), p. 042317. Google Scholar

[8] C. Wang, F.G. Deng, Y.S. Li, et al.Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 71 (2005), p. 044305. Google Scholar

[9] J.Y. Hu, B. Yu, M.Y. Jing, et al.Experimental quantum secure direct communication with single photons. Light Sci Appl, 5 (2016), p. e16144. Google Scholar

[10] W. Zhang, D.S. Ding, Y.B. Sheng, et al.Quantum secure direct communication with quantum memory. Phys Rev Lett, 118 (2017), p. 220501. Google Scholar

[11] Y.G. Yang, P. Xu, R. Yang, et al.Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Sci Rep, 6 (2016), p. 19788. Google Scholar

[12] Y.G. Yang, Z.C. Liu, J. Li, et al.Quantum private query with perfect user privacy against a joint-measurement attack. Phys Lett A, 380 (2016), pp. 4033-4038. Google Scholar

[13] G.L. LongGrover algorithm with zero theoretical failure rate. Phys Rev A, 64 (2001), p. 022307. Google Scholar

[14] J.I. Cirac, P. ZollerQuantum computations with cold trapped ions. Phys Rev Lett, 74 (1995), pp. 4091-4094. Google Scholar

[15] C.Y. Lu, X.Q. Zhou, O. Guehne, et al.Experimental entanglement of six photons in graph states. Nat Phys, 3 (2007), pp. 91-95. Google Scholar

[16] Y. Makhlin, G. Schön, A. ShnirmanQuantum-state engineering with Josephson-junction devices. Rev Mod Phys, 73 (2001), pp. 357-400. Google Scholar

[17] J. Berezovsky, M.H. Mikkelsen, N.G. Stoltz, et al.Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science, 320 (2008), pp. 349-352. Google Scholar

[18] M. Mohri, A. Rostamizadeh, A. TalwalkarFoundations of machine learning. MIT Press, Cambridge, MA (2012). Google Scholar

[19] A. Hentschel, B.C. SandersMachine learning for precise quantum measurement. Phys Rev Lett, 104 (2010), p. 063603. Google Scholar

[20] E. Magesan, J.M. Gambetta, A.D. Córcoles, et al.Machine learning for discriminating quantum measurement trajectories and improving readout. Phys Rev Lett, 114 (2014), p. 200501. Google Scholar

[21] P. Rebentrost, M. Mohseni, S. LloydQuantum support vector machine for big data classification. Phys Rev Lett, 113 (2014), p. 130503. Google Scholar

[22] J. Bang, J. Ryu, S. Yoo, et al.A strategy for quantum algorithm design assisted by machine learning. New J Phys, 16 (2014), p. 073017. Google Scholar

[23] S. Yoo, J. Bang, C. Lee, et al.A quantum speedup in machine learning: finding an N-bit Boolean function for a classification. New J Phys, 16 (2014), p. 103014. Google Scholar

[24] J. Bang, S.W. Lee, H. JeongProtocol for secure quantum machine learning at a distant place. Quant Inf Process, 14 (2015), pp. 3933-3947. Google Scholar

[25] A.W. Cross, G. Smith, J.A. SmolinQuantum learning robust against noise. Phys Rev A, 92 (2015), p. 012327. Google Scholar

[26] M. Schuld, I. Sinayskiy, F. PetruccioneAn introduction to quantum machine learning. Contemp Phys, 56 (2015), p. 172. Google Scholar

[27] X.D. Cai, D. Wu, Z.E. Su, et al.Entanglement-based machine learning on a quantum computer. Phys Rev Lett, 114 (2015), p. 110504. Google Scholar

[28] Z.K. Li, X.M. Liu, N.Y. Xu, et al.Experimental realization of a quantum support vector machine. Phys Rev Lett, 114 (2015), p. 140504. Google Scholar

[29] Y. Zhang, E.A. KimQuantum loop topography for machine learning. Phys Rev Lett, 118 (2017), p. 216401. Google Scholar

[30] A. Monras, G. Sentis, P. WittekInductive supervised quantum learning. Phys Rev Lett, 118 (2017), p. 190503. Google Scholar

[31] G.J. MilburnQuantum optical Fredkin gate. Phys Rev Lett, 62 (1989), pp. 2124-2127. Google Scholar

[32] S.P. Walborn, P.H. Souto Ribeiro, L. Davidovich, et al.Experimental determination of entanglement with a single measurement. Nature, 440 (2006), pp. 1022-1024. Google Scholar

[33] L. Zhou, Y.B. ShengDetection of nonlocal atomic entanglement assisted by single photons. Phys Rev A, 90 (2014), p. 024301. Google Scholar

[34] H.R. Wei, P.J. ZhuImplementations of two-photon four-qubit Toffoli and Fredkin gates assisted by nitrogen-vacancy centers. Sci Rep, 6 (2016), p. 35529. Google Scholar

[35] X.L. Wang, X.D. Cai, Z.E. Su, et al.Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 518 (2015), pp. 516-519. Google Scholar

[36] F.G. Deng, B.C. Ren, X.H. LiQuantum hyperentanglement and its applications in quantum information processing. Sci Bull, 62 (2017), pp. 46-68. Google Scholar

[37] D.S. Ding, W. Zhang, Z.Y. Zhou, et al.Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys Rev Lett, 114 (2015), p. 050502. Google Scholar

[38] H. Mikami, T. KobayashiRemote preparation of qutrit states with biphotons. Phys Rev A, 75 (2007), p. 022325. Google Scholar

[39] A. Feizpour, M. Hallaji, G. Dmochowski, et al.Observation of the nonlinear phase shift due to single post-selected photons. Nat Phys, 11 (2015), pp. 905-909. Google Scholar

[40] C.I. Osorio, N. Bruno, N. Sangouard, et al.Heralded photon amplification for quantum communication. Phys Rev A, 86 (2012), p. 023815. Google Scholar

[41] L. Zhou, Y.B. ShengRecyclable amplification protocol for the single-photon entangled state. Laser Phys Lett, 12 (2015), p. 045203. Google Scholar

[42] H.J. Briegel, W. Dür, J.I. Cirac, et al.Quantum repeaters: the role of imperfect local operations in quantum communication. Phys Rev Lett, 81 (1998), pp. 5932-5935. Google Scholar

[43] C. Wang, T.J. Wang, Y. Zhang, et al.Construction of a quantum repeater based on a quantum dot in an optical microcavity system. Laser Phys Lett, 11 (2014), p. 065202. Google Scholar

[44] Y.B. Sheng, L. ZhouDeterministic polarization entanglement purification using time-bin entanglement. Laser Phys Lett, 11 (2014), p. 085203. Google Scholar

[45] Y.B. Sheng, L. ZhouDeterministic entanglement distillation for secure double-server blind quantum computation. Sci Rep, 5 (2015), p. 7815. Google Scholar

[46] T.J. Wang, L.L. Liu, R. Zhang, et al.One-step hyperentanglement purification and hyperdistillation with linear optics. Opt Express, 23 (2015), pp. 9284-9294. Google Scholar

[47] C. Cao, X. Chen, Y.W. Duan, et al.Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements. Sci China Phys Mech Astron, 59 (2016), p. 100315. Google Scholar

[48] Y.B. Sheng, J. Pan, R. Guo, et al.Efficient N-particle W state concentration with different parity check gates. Sci China Phys Mech Astron, 58 (2015), p. 060301. Google Scholar

[49] F.F. Du, F.G. DengHeralded entanglement concentration for photon systems with linear-optical elements. Sci China Phys Mech Astron, 58 (2015), p. 040303. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号