logo

More info
  • ReceivedMar 22, 2018
  • AcceptedJun 8, 2018
  • PublishedJun 20, 2018

Abstract

Classical simulations of quantum circuits are limited in both space and time when the qubit count is above 50, the realm where quantum supremacy reigns. However, recently, for the low depth circuit with more than 50 qubits, there are several methods of simulation proposed by teams at Google and IBM. Here, we present a scheme of simulation which can extract a large amount of measurement outcomes within a short time, achieving a 64-qubit simulation of a universal random circuit of depth 22 using a 128-node cluster, and 56- and 42-qubit circuits on a single PC. We also estimate that a 72-qubit circuit of depth 23 can be simulated in about 16 h on a supercomputer identical to that used by the IBM team. Moreover, the simulation processes are exceedingly separable, hence parallelizable, involving just a few inter-process communications. Our work enables simulating more qubits with less hardware burden and provides a new perspective for classical simulations.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号