SCIENTIA SINICA Chimica, Volume 43, Issue 12: 1730-1735(2013) https://doi.org/10.1360/032013-241


More info
  • AcceptedSep 24, 2013
  • PublishedDec 12, 2013


Semiconducting silicon nanowires (SiNWs) represent one of the most interesting research directions in nanoscience and nanotechnology, and have been successfully applied in the fields of biological sensing, lithium-ion battery, solar cells and so on, with capabilities of realizing structural and functional complexity through rational design and synthesis. Chemical vapor deposition (CVD) method is one of the most common methods in the bottom-up approach. This review provides a brief summary of SiNW synthesis through the CVD method in the past decade, which mainly divided into the single structured and complex structured SiNWs. The synthesis of single structured SiNWs includes intrinsic, doped, and super-long SiNWs. The synthesis of complex structured SiNWs includes the axial, radial heterostructures, kinked, and branched SiNWs.


[1] Lieber CM. Semiconductor nanowires: A platform for nanoscience and nanotechnology. MRS Bull, 2011, 36: 1052-1063. Google Scholar

[2] Ma D, Lee C, Au F, Tong S, Lee S. Small-diameter silicon nanowire surfaces. Science, 2003, 299: 1874-1877. Google Scholar

[3] Lieber CM, Wang ZL. Functional nanowires. MRS Bull, 2007, 32: 99. Google Scholar

[4] Nakayama Y, Pauzauskie PJ, Radenovic A, Onorato RM, Saykally RJ, Liphardt J, Yang P. Tunable nanowire nonlinear optical probe. Nature, 2007, 447: 1098-1101. Google Scholar

[5] Jiang Z, Qing Q, Xie P, Gao R, Lieber CM. Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett, 2012, 12: 1711-1716. Google Scholar

[6] Tian B, Cohen-Karni T, Qing Q, Duan X, Xie P, Lieber CM. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science, 2010, 329: 830-834. Google Scholar

[7] Treuting R, Arnold S. Orientation habits of metal whiskers. Acta Metall, 1957, 5: 598. Google Scholar

[8] Wagner R, Ellis W. Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett, 1964, 4: 89-90. Google Scholar

[9] Morales AM, Lieber CM. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998, 279: 208-211. Google Scholar

[10] Zhang YF, Tang YH, Wang N, Yu DP, Lee CS, Bello I, Lee ST. Silicon nanowires prepared by laser ablation at high temperature. Appl Phys Lett, 1998, 72: 1835. Google Scholar

[11] Lauhon LJ, Gudiksen MS, Wang D, Lieber CM, Epitaxial core-shell and core-multishell nanowire heterostructures. Nature, 2002, 420: 57-61. Google Scholar

[12] Schmidt V, Wittemann J, Gosele U, Growth, thermodynamics, and electrical properties of silicon nanowires. Chem Rev, 2010, 110: 361-388. Google Scholar

[13] Schmidt V, Wittemann JV, Senz S, Gösele U. Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv Mater, 2009, 21: 2681-2702. Google Scholar

[14] Ramanujam J, Shiri D, Verma A. Silicon nanowire growth and properties: A review. Mater Exp, 2011, 1: 105-126. Google Scholar

[15] Zhang RQ, Lifshitz Y, Lee ST. Oxide-assisted growth of semiconducting nanowires. Adv Mater, 2003, 15: 635-640. Google Scholar

[16] Shao M, Ma DDD, Lee ST. Silicon nanowires-synthesis, properties, and applications. Eur J Inorg Chem, 2010, 27: 4264-4278. Google Scholar

[17] Das Kanungo P, Zakharov N, Bauer J, Breitenstein O, Werner P, Goesele U. Controlled in situ boron doping of short silicon nanowires grown by molecular beam epitaxy. Appl Phys Lett, 2008, 92: 263107. Google Scholar

[18] Pan Z, Dai Z, Xu L, Lee S, Wang Z. Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. J Phys Chem B, 2001, 105: 2507-2514. Google Scholar

[19] Holmes JD, Johnston KP, Doty RC, Korgel BA. Control of thickness and orientation of solution-grown silicon nanowires. Science, 2000, 287: 1471-1473. Google Scholar

[20] Hanrath T, Korgel BA. Supercritical fluid-liquid-solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals. Adv Mater, 2003, 15: 437-440. Google Scholar

[21] Lieber CM. Nanoscale science and technology: Building a big future from small things. MRS Bull, 2003, 28: 486-491. Google Scholar

[22] Yang C, Zhong Z, Lieber CM. Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science, 2005, 310: 1304-1307. Google Scholar

[23] Park WI, Zheng GF, Jiang XC, Tian BZ, Lieber CM. Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. Nano Lett, 2008, 8: 3004-3009. Google Scholar

[24] Lauhon LJ, Gudiksen MS, Wang CL, Lieber CM. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature, 2002, 420: 57-61. Google Scholar

[25] Tian BZ, Zheng XL, Kempa TJ, Fang Y, Yu NF, Yu GH, Huang JL, Lieber CM. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449: 885-810. Google Scholar

[26] Xiang J, Lu W, Hu YJ, Wu Y, Yan H, Lieber CM. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature, 2006, 441: 489-493. Google Scholar

[27] Ben-Ishai M, Patolsky F. From crystalline germanium-silicon axial heterostructures to silicon nanowire-nanotubes. Nano Lett, 2012, 12: 1121-1128. Google Scholar

[28] Tian B, Xie P, Kempa TJ, Bell DC, Lieber CM. Single-crystalline kinked semiconductor nanowire superstructures. Nat Nanotechnol, 2009, 4: 824-829. Google Scholar

[29] Jiang XC, Tian BZ, Xiang J, Qian F, Zheng GF, Wang HT, Mai LQ, Lieber CM. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc Natl Acad Sci USA, 2011, 108: 12212-12216. Google Scholar

[30] Wang D, Qian F, Yang C, Zhong Z, Lieber CM. Rational growth of branched and hyperbranched nanowire structures. Nano Lett, 2004, 4: 871-874. Google Scholar

[31] Fan ZY, Ho JC, Takahashi T, Yerushalmi R, Takei K, Ford AC, Chueh YL, Javey A. Toward the development of printable nanowire electronics and sensors. Adv Mater, 2009, 21: 3730-3743. Google Scholar

[32] Ramgir NS, Yang Y, Zacharias M. Nanowire-based sensors. Small, 2010, 6: 1705-1722. Google Scholar

[33] Gong JR. Label-free attomolar detection of proteins using integrated nanoelectronic and electrokinetic devices. Small, 2010, 6: 967-973. Google Scholar

[34] Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol, 2008, 3: 31-35. Google Scholar

[35] Chan CK, Patel RN, O’Connell MJ, Korgel BA, Cui Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano, 2010, 4: 1443-1450. Google Scholar

[36] Garnett E, Yang PD. Light trapping in silicon nanowire solar cells. Nano Lett, 2010, 10: 1082-1087. Google Scholar

[37] Peng KQ, Lee ST, Silicon nanowires for photovoltaic solar energy conversion. Adv Mater, 2011, 23: 198-215. Google Scholar

[38] Peng KQ, Wang X, Li L, Hu Y, Lee ST. Silicon nanowires for advanced energy conversion and storage. Nano Today, 2013, 8: 75-97. Google Scholar

[39] Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu J-K, Goddard III WA, Heath JR. Silicon nanowires as efficient thermoelectric materials. Nature, 2008, 451: 168-171. Google Scholar

[40] Boettcher SW, Spurgeon JM, Putnam MC, Warren EL, Turner-Evans DB, Kelzenberg MD, Maiolo JR, Atwater HA, Lewis NS. Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes. Science, 2010, 327: 185-187. Google Scholar

[41] Liu C, Tang J, Chen HM, Liu B, Yang PD. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett, 2013, 13: 2989-2992. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有