logo

SCIENTIA SINICA Mathematica, Volume 49, Issue 2: 125(2019) https://doi.org/10.1360/N012018-00052

Harmonic maps and their generalizations

More info
  • ReceivedMar 8, 2018
  • AcceptedSep 29, 2018
  • PublishedDec 28, 2018

Abstract

This paper gives a survey on generalizations of harmonic maps, including Hermitian harmonic maps, Weyl harmonic maps, affine harmonic maps, harmonic maps from Finslermanifolds, harmonic maps between metric spaces and Dirac-harmonic maps etc.


Funded by

国家自然科学基金(11571259)


References

[1] 齐民友. 论数据给在??物型退缩线上的一类双曲型方程之哥西问题. 数学学报, 1958, 8: 521--530. Google Scholar

[2] Jost J. Riemannian Geometry and Geometric Analysis. New York: Springer, 2017. Google Scholar

[3] Jost J, Li-Jost X. Calculus of Variations. Cambridge: Cambridge University Press, 1998. Google Scholar

[4] Bochner S. Harmonic surfaces in Riemann metric. Trans Amer Math Soc, 1940, 47: 146-154 CrossRef Google Scholar

[5] Fuller F B. Harmonic mappings. Proc Natl Acad Sci USA, 1954, 40: 987-991 CrossRef ADS Google Scholar

[6] Jost J. Harmonic mappings. In: Handbook of Geometric Analysis. Somerville: International Press, 2008, 147--194. Google Scholar

[7] Lohkamp J. An existence theorem for harmonic maps. Manuscripta Math, 1990, 67: 21-23 CrossRef Google Scholar

[8] Wolf M. Infinite energy harmonic maps and degeneration of hyperbolic surfaces in moduli space. J Differential Geom, 1991, 33: 487-539 CrossRef Google Scholar

[9] Jost J, Zuo K. Harmonic maps of infinite energy and rigidity results for representations of fundamental groups of quasiprojective varieties. J Differential Geom, 1997, 47: 469-503 CrossRef Google Scholar

[10] Ding W, Tian G. Energy identity for a class of approximate harmonic maps from surfaces. Comm Anal Geom, 1995, 3: 543-554 CrossRef Google Scholar

[11] Chen W, Jost J. Maps with prescribed tension fields. Comm Anal Geom, 2004, 12: 93-109 CrossRef Google Scholar

[12] Li J, Zhu X. Energy identity for the maps from a surface with tension field bounded in $L^p$. Pacific J Math, 2012, 260: 181-195 CrossRef Google Scholar

[13] Wang W, Wei D, Zhang Z. Energy identity for approximate harmonic maps from surfaces to general targets. J Funct Anal, 2017, 272: 776-803 CrossRef Google Scholar

[14] J?ger W, Kaul H. Uniqueness and stability of harmonic maps and their Jacobi fields. Manuscripta Math, 1979, 28: 269-291 CrossRef Google Scholar

[15] Chen Q, Jost J, Wang G. A Maximum Principle for Generalizations of Harmonic Maps in Hermitian, affine, Weyl, and Finsler Geometry. J Geom Anal, 2015, 25: 2407-2426 CrossRef Google Scholar

[16] Chen Q, Jost J, Qiu H. Existence and Liouville theorems for V -harmonic maps from complete manifolds. Ann Global Anal Geom, 2012, 42: 565-584 CrossRef Google Scholar

[17] Chen Q, Jost J, Qiu H. Omori-Yau maximum principles, $V$-harmonic maps and their geometric applications. Ann Global Anal Geom, 2014, 46: 259-279 CrossRef Google Scholar

[18] Jost J, Yau S T. A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry. Acta Math, 1993, 170: 221-254 CrossRef Google Scholar

[19] Ni L. Hermitian harmonic maps from complete Hermitian manifolds to complete Riemannian manifolds. Math Z, 1999, 232: 331-355 CrossRef Google Scholar

[20] Chen J. A boundary value problem for Hermitian harmonic maps and applications. Proc Amer Math Soc, 1996, 124: 2853-2863 CrossRef Google Scholar

[21] Grunau H C, K\"uhnel M. On the existence of Hermitian-harmonic maps from complete Hermitian to complete Riemannian manifolds. Math Z, 2005, 249: 297-327 CrossRef Google Scholar

[22] Li Z Y, Zhang X. Hermitian harmonic maps into convex balls. Canad Math Bull, 2007, 50: 113-122 CrossRef Google Scholar

[23] Liu K, Yang X. Hermitian harmonic maps and non-degenerate curvatures. Math Res Lett, 2014, 21: 831-862 CrossRef Google Scholar

[24] Kokarev G. On pseudo-harmonic maps in conformal geometry. Proc Lond Math Soc (3), 2009, 99: 168-194 CrossRef Google Scholar

[25] Kokarev G, Kotschick D. Fibrations and fundamental groups of Kähler-Weyl manifolds. Proc Amer Math Soc, 2010, 138: 997-1010 CrossRef Google Scholar

[26] Jost J, cS.imcs.ir F M. Affine harmonic maps. Analysis, 2009, 26: 185--197. Google Scholar

[27] Jost J, cS.imcs.ir F M. Non-divergence harmonic maps. Contemp Math, 2011, 542: 231--238. Google Scholar

[28] Ay N, Jost J, Lê H V, et al. Information Geometry. Berlin: Springer, 2017. Google Scholar

[29] Centore P. Finsler Laplacians and minimal-energy maps. Internat J Math, 2000, 11: 1-13 CrossRef Google Scholar

[30] Mo X H. Harmonic maps from Finsler manifolds. Illinois J. Math, 2001, 45: 1331--1345. Google Scholar

[31] Mo X H, Yang Y Y. The existence of harmonic maps from Finsler manifolds to Riemannian manifolds. Sci China Ser A, 2005, 48: 115--130. Google Scholar

[32] von der Mosel H, Winklmann S. On weakly harmonic maps from Finsler to Riemannian manifolds. Ann Inst H Poincaré Anal Non Linéaire, 2009, 26: 39-57 CrossRef ADS Google Scholar

[33] Jost J. Equilibrium maps between metric spaces. Calc Var Partial Differential Equations, 1994, 2: 173-204 CrossRef Google Scholar

[34] Jost J. Convex functionals and generalized harmonic maps into spaces of non positive curvature. Comment Math Helv, 1995, 70: 659-673 CrossRef Google Scholar

[35] Jost J. Generalized harmonic maps between metric spaces. In: Geometric Analysis and the Calculus of Variations for Stefan Hildebrandt. Boston: International Press, 1996, 143--174. Google Scholar

[36] Jost J. Nonpositive Curvature: Geometric and Analytic Aspects. Basel: Birkhäuser, 1997. Google Scholar

[37] Korevaar N J, Schoen R M. Sobolev spaces and harmonic maps for metric space targets. Comm Anal Geom, 1993, 1: 561-659 CrossRef Google Scholar

[38] Jost J, Todjihounde L. Harmonic nets in metric spaces. Pacific J Math, 2007, 231: 437-444 CrossRef Google Scholar

[39] Riemann B. On the Hypotheses Which Lie at the Bases of Geometry. Classic Texts in the Sciences. Basel: Birkhäuser, 2016. Google Scholar

[40] Alexandrov A D. Über eine verallgemeinerung der Riemannschen geometrie. Schr Forschungsinst Math, 1957, 1: 33--84. Google Scholar

[41] Berestovskij V N, Nikolaev I G. Multidimensional generalized Riemannian spaces. In: Geometry IV. Encyclopedia of Mathematics Sciences, vol. 70. New York: Springer, 1993, 165--243r. Google Scholar

[42] Busemann H. The Geometry of Geodesics. New York: Academic Press, 1955. Google Scholar

[43] Ba\v{c}ák M, Hua B, Jost J. A notion of nonpositive curvature for general metric spaces. Differential Geom Appl, 2015, 38: 22-32 CrossRef Google Scholar

[44] Jost J, Yau S T. Harmonic maps and group representations. In: Differential Geometry. Harlow: Longman Scientific, 1991, 241--259. Google Scholar

[45] Reshetnyak Y G. Inextensible mappings in a space of curvature no greater than K. Soviet Math J, 1968, 9: 683-689 CrossRef Google Scholar

[46] Gromov M, Schoen R. Harmonic maps into singular spaces and $p$-adic superrigidity for lattices in groups of rank one. Publ Math Inst Hautes Études Sci, 1992, 76: 165-246 CrossRef Google Scholar

[47] Moser J. On Harnack's theorem for elliptic differential equations. Comm Pure Appl Math, 1961, 14: 577-591 CrossRef Google Scholar

[48] Biroli M, Mosco U. A Saint-Venant type principle for Dirichlet forms on discontinuous media. Ann Mat Pura Appl (4), 1995, 169: 125-181 CrossRef Google Scholar

[49] Grigor'yan A A. The heat equation on noncompact Riemannian manifolds. Math USSR Sb, 1992, 72: 47-77 CrossRef ADS Google Scholar

[50] Saloff-Coste L. Parabolic Harnack inequality for divergence form second order differential operators. Potential Anal, 1995, 4: 429-467 CrossRef Google Scholar

[51] Jost J. Generalized Dirichlet forms and harmonic maps. Calc Var Partial Differential Equations, 1997, 5: 1-19 CrossRef Google Scholar

[52] Lin F H. Analysis on singular spaces. In: Geometry, Analysis and Mathematical Physics, in honor of Prof. Chaohao Gu. Singapore: World Scientific, 1997, 114--126. Google Scholar

[53] Jost J, Xu C J. Subelliptic harmonic maps. Trans Amer Math Soc, 1998, 350: 4633-4650 CrossRef Google Scholar

[54] Zhang H C, Zhu X P. Lipschitz continuity of harmonic maps between Alexandrov spaces. Invent Math, 2018, 211: 863-934 CrossRef ADS Google Scholar

[55] Deligne P, Etingof P, Freed D, et al. Quantum Fields and Strings: A Course for Mathematicians, Vol. I. Princeton: Amer Math Soc and Inst Adv Study, 1999. Google Scholar

[56] Deligne P, Etingof P, Freed D, et al. Quantum Fields and Strings: A Course for Mathematicians, Vol. II. Princeton: Amer Math Soc and Inst Adv Study, 1999. Google Scholar

[57] Jost J. Geometry and Physics. New York: Springer, 2009. Google Scholar

[58] Jost J, Ke{\ss}ler E, Tolksdorf J. Super Riemann surfaces, metrics and gravitinos. Adv Theor Math Phys, 2017, 21: 1161-1187 CrossRef Google Scholar

[59] Keßler E. The super conformal action functional on super Riemann surfaces. PhD Thesis. Leipzig: Universität Leipzig, 2017. Google Scholar

[60] Chen Q, Jost J, Li J. Dirac-harmonic maps. Math Z, 2006, 254: 409-432 CrossRef Google Scholar

[61] Chen Q, Jost J, Li J. Regularity theorems and energy identities for Dirac-harmonic maps. Math Z, 2005, 251: 61-84 CrossRef Google Scholar

[62] Jost J, Ke{\ss}ler E, Tolksdorf J. Regularity of solutions of the nonlinear sigma model with gravitino. Comm Math Phys, 2018, 358: 171-197 CrossRef ADS arXiv Google Scholar

[63] Branding V. Some aspects of Dirac-harmonic maps with curvature term. Differential Geom Appl, 2015, 40: 1-13 CrossRef Google Scholar

[64] Branding V. Dirac-harmonic maps with torsion. Commun Contemp Math, 2016, 18: 1550064 CrossRef Google Scholar

[65] Chen Q, Jost J, Sun L. Gradient estimates and Liouville theorems for Dirac-harmonic maps. J Geom Phys, 2014, 76: 66-78 CrossRef ADS Google Scholar

[66] Chen Q, Jost J, Sun L L, et al. Dirac-geodesics and their heat flows. Calc Var Partial Differential Equations, 2015, 54: 2615--2635. Google Scholar

[67] Chen Q, Jost J, Sun L L, et al. Dirac-harmonic maps between Riemann surfaces. Max Planck Institute for Mathematics in the Sciences Preprint 76/2015, 2015. Google Scholar

[68] Chen Q, Jost J, Wang G. Liouville theorems for Dirac-harmonic maps. J Math Phys, 2007, 48: 113517 CrossRef ADS arXiv Google Scholar

[69] Chen Q, Jost J, Wang G. The boundary value problem for Dirac-harmonic maps. J Eur Math Soc (JEMS), 2013, 15: 997-1031 CrossRef Google Scholar

[70] Jost J, Liu L, Zhu M M. Geometric analysis of the action functional of the nonlinear supersymmetric sigma model. Max Planck Institute for Mathematics in the Sciences Preprint 77/2015, 2015. Google Scholar

[71] Jost J, Liu L, Zhu M M. Regularity of Dirac-harmonic maps with $\lambda$-curvature term in higher dimensions. Max Planck Institute for Mathematics in the Sciences, 2017. Google Scholar

[72] Jost J, Liu L, Zhu M. Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary. Ann Inst H Poincaré Anal Non Linéaire, 2018, doi: 10.1016/j.anihpc.2018.05.006 CrossRef Google Scholar

[73] Sharp B, Zhu M. Regularity at the free boundary for Dirac-harmonic maps from surfaces. Calc Var Partial Differential Equations, 2016, 55: 27 CrossRef Google Scholar

[74] Wang C Y, Xu D L. Regularity of Dirac-harmonic maps. Int Math Res Not IMRN, 2009, 20: 3759--3792. Google Scholar

[75] Zhu M. Regularity for weakly Dirac-harmonic maps to hypersurfaces. Ann Global Anal Geom, 2009, 35: 405-412 CrossRef Google Scholar

[76] Rivière T. Conservation laws for conformally invariant variational problems. Invent Math, 2007, 168: 1-22 CrossRef ADS Google Scholar

[77] Chen Q, Jost J, Sun L L, et al. Estimates for solutions of Dirac equations and an application to a geometric elliptic-parabolic problem. J Eur Math Soc (JEMS), 2017, in press. Google Scholar

[78] Jost J, Liu L, Zhu M. Blow-up analysis for approximate Dirac-harmonic maps in dimension 2 with applications to the Dirac-harmonic heat flow. Calc Var Partial Differential Equations, 2017, 56: 108 CrossRef Google Scholar

[79] Jost J, Liu L, Zhu M. A global weak solution of the Dirac-harmonic map flow. Ann Inst H Poincaré Anal Non Linéaire, 2017, 34: 1851-1882 CrossRef ADS Google Scholar

[80] Jost J, Liu L, Zhu M M. The existence of Dirac-harmonic maps with Dirichlet-chiral boundary conditions. Max Planck Institute for Mathematics in the Sciences Preprint 35/2017, 2017. Google Scholar

[81] Wittmann J. Short time existence of the heat flow for Dirac-harmonic maps on closed manifolds. Calc Var Partial Differential Equations, 2017, 56: 169 CrossRef Google Scholar

[82] Jost J, Wu R J, Zhu M M. Energy quantization for a nonlinear sigma model with critical gravitinos.. arXiv Google Scholar

[83] Jost J, Wu R, Zhu M. Coarse regularity of solutions to a nonlinear sigma-model with $L^p$ gravitino. Calc Var Partial Differential Equations, 2017, 56: 154 CrossRef Google Scholar

[84] Jost J, Ke{\ss}ler E, Tolksdorf J. Symmetries and conservation laws of a nonlinear sigma model with gravitino. J Geom Phys, 2018, 128: 185-198 CrossRef ADS arXiv Google Scholar

[85] Seiberg N, Witten E. Electromagnetic duality, monopol condensation, and confinement in $N~=~2$ supersymmetric Yang-Mills theory. Nucl Phys B, 1994, 431: 581--640. Google Scholar

[86] Seiberg N, Witten E. Monopoles, duality and chiral symmetry breaking in $N~=~2$ supersymmetric QCD. Nucl Phys B, 1994, 431: 484-550 CrossRef ADS Google Scholar

[87] Jost J, Peng X, Wang G. Variational aspects of the Seiberg-Witten functional. Calc Var Partial Differential Equations, 1996, 4: 205-218 CrossRef Google Scholar

[88] Gromov M. Pseudo holomorphic curves in symplectic manifolds. Invent Math, 1985, 82: 307-347 CrossRef ADS Google Scholar

[89] Taubes C. $SW\Rightarrow~Gr:$ From the Seiberg-Witten equations to pseudo-holomorphic curves. J Amer Math Soc, 1996, 9: 845--918. Google Scholar

[90] Jost J, Wang G, Zhou C. Super-Liouville equations on closed Riemann surfaces. Comm Partial Differential Equations, 2007, 32: 1103-1128 CrossRef Google Scholar

[91] Jost J, Wang G, Zhou C. Energy identities and blow-up analysis for solutions of the super Liouville equation. J Math Pures Appl (9), 2009, 92: 295-312 CrossRef Google Scholar

[92] Jost J, Wang G, Zhou C. The boundary value problem for the super-Liouville equation. Ann Inst H Poincaré Anal Non Linéaire, 2014, 31: 685-706 CrossRef ADS Google Scholar

[93] Jost J, Zhou C, Zhu M. The qualitative boundary behavior of blow-up solutions of the super-Liouville equations. J Math Pures Appl (9), 2014, 101: 689-715 CrossRef Google Scholar

[94] Jost J, Zhou C, Zhu M. A local estimate for super-Liouville equations on closed Riemann surfaces. Calc Var Partial Differential Equations, 2015, 53: 247-264 CrossRef Google Scholar

[95] Jost J, Zhou C Q, Zhu M M. Vanishing Pohozaev constant and removability of singularities. Max Planck Institute for Mathematics in the Sciences, 2015. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1