logo

SCIENTIA SINICA Chimica, Volume 45, Issue 6: 597-613(2015) https://doi.org/10.1360/N032014-00314

Studies on the environmental health effects and ecotoxicology of mercury by synchrotron radiation-based techniques

More info
  • AcceptedDec 29, 2014
  • PublishedJun 2, 2015

Abstract

Synchrotron radiation has notable quality such as high brightness, high level of polarization, high collimation, high brilliance, high intensity and wide tunability in energy/wavelength. The application of synchrotron radiation based techniques in the speciation, distribution, transformation and interactions with organic matters and proteins of mercury to elucidate the environmental health effect and ecotoxicity of mercury are introduced in this paper. These techniques include X-ray absorption spectroscopy, X-ray fluorescence spectroscopy, X-ray diffraction spectrometry, small angel X-ray scattering and scanning transmission X-ray microscopy, etc. The future aspects of application of synchrotron radiation based techniques in the study on the environmental health effects and ecotoxicology of mercury are also described.


References

[1] Guallar E, Sanz-Gallardo MI, Veer Pv, Bode P, Aro A, Gomez-Aracena J, Kark JD, Riemersma RA, Martin-Moreno JM, Kok FJ. Mercury, fish oils, and the risk of myocardial infarction. N Engl J Med, 2002, 347: 1747-1754. Google Scholar

[2] Trasande L, Landrigan PJ, Schechter C. Public health and economic consequences of methyl mercury toxicity to the developing brain. Environ Health Perspect, 2005, 113: 590-596. Google Scholar

[3] Boening DW. Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 2000, 40: 1335-1351. Google Scholar

[4] Chai Z, Stemshorn B, Hao J, Jiang G, Hu J, Feng X, Lan H, Sun Y, Larssen T, Lahl U, den Herder K, Chin C, Baird S. Special policy study on mercury management in China. In: The China Council for International Cooperation on Environment and Development, Beijing, 2011. Google Scholar

[5] 张磊, 王起超, 邵志国. 第二松花江下游居民发汞水平及影响因素分析. 环境科学研究, 2005, 18: 113-115. Google Scholar

[6] Chen C, Qu L, Zhao J, Liu S, Deng G, Li B, Zhang P, Chai Z. Accumulation of mercury, selenium and their binding proteins in porcine kidney and liver from mercury-exposed areas with the investigation of their redox responses. Sci Total Environ, 2006, 366: 627-637. Google Scholar

[7] Chen C, Yu H, Zhao J, Li B, Qu L, Liu S, Zhang P, Chai Z. The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Perspect, 2006, 114: 297-301. Google Scholar

[8] Hrubá F, Strömberg U, Černá M, Chen C, Harari F, Harari R, Horvat M, Koppová K, Kos A, Krsková A, Krsnik M, Laamech J, Li YF, Löfmark L, Lundh T, Lundström NG, Lyoussi B, Mazej D, Osredkar J, Pawlas K, Pawlas N, Prokopowicz A, Rentschler G, Spěváčková V, Spiric Z, Tratnik J, Skerfving S, Bergdahl IA. Blood cadmium, mercury, and lead in children: an international comparison of cities in six European countries, and China, Ecuador, and Morocco. Environ Int, 2012, 41: 29-34. Google Scholar

[9] Pawlas N, Strömberg U, Carlberg B, Cerna M, Harari F, Harari R, Horvat M, Hruba F, Koppova K, Krskova A, Krsnik M, Yu-Feng L, Löfmark L, Lundh T, Lundström NG, Lyoussi B, Markiewicz-Górka I, Mazej D, Osredkar J, Pawlas K, Rentschler G, Spevackova V, Spiric Z, Sundkvist A, Tratnik J, Vadla D, Zizi S, Skerfving S, Bergdahl I. Cadmium, mercury and lead in the blood of urban women in Croatia, the Czech Republic, Poland, Clovakia, Slovenia, Sweden, China, Ecuador and Morocco. Int J Occup Med Environ Health, 2013, 26: 1-15. Google Scholar

[10] 李玉锋, 陈春英, 邢丽, 刘涛, 谢亚宁, 高愈希, 李柏, 瞿丽雅, 柴之芳. 贵州万山汞矿地区人发中汞的含量及其赋存状态的XAFS原位研究. 核技术, 2004, 27: 899-903. Google Scholar

[11] Cheng J, Gao L, Zhao W, Liu X, Sakamoto M, Wang W. Mercury levels in fisherman and their household members in Zhoushan, China: Impact of public health. Sci Total Environ, 2009, 407: 2625-2630. Google Scholar

[12] 梁立娜, 江桂斌. 高效液相色谱及其联用技术在汞形态分析中的应用. 分析科学学报, 2002, 18: 338-343. Google Scholar

[13] 马晓国, 高忠本. 环境样品中汞形态分析技术的进展. 生态环境学报, 2011, 20: 1367-1372. Google Scholar

[14] 江桂斌. 环境样品前处理技术. 北京: 化学工业出版社, 2004. Google Scholar

[15] Hintelmann H, Falter R, Ilgen G, Evans RD. Determination of artifactual formation of monomethylmercury (CH3Hg+) in environmental samples using stable Hg2+ isotopes with ICP-MS detection: calculation of contents applying species specific isotope addition. Fresenius J Anal Chem, 1997, 358: 363-370. Google Scholar

[16] Wang M, Feng W, Shi J, Zhang F, Wang B, Zhu M, Li B, Zhao Y, Chai Z. Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS. Talanta, 2007, 71: 2034-2039. Google Scholar

[17] Jensen S, Jernelov A. Biological methylation of mercury in aquatic organisms. Nature, 1969, 223: 753-754. Google Scholar

[18] 马礼敦, 杨福家. 同步辐射应用概论. 上海: 复旦大学出版社, 2001. Google Scholar

[19] 麦振洪等. 同步辐射光源及其应用. 北京: 科学出版社, 2013. Google Scholar

[20] 张令翊, 庄杰佳, 赵夔, 陈佳洱. 第四代光源. 强激光与粒子束, 2001, 13: 51-55. Google Scholar

[21] 朱雄伟, 张闯, 王书鸿, 陈森玉. 第四代光源—相干光源. 现代物理知识, 2009, 21: 49-51. Google Scholar

[22] 中华人民共和国国务院.国家重大科技基础设施建设中长期规划.. Google Scholar

[23] Koningsberger DC, Prins R. X-ray Absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. New York: John Wiley and Sons Inc, 1988. Google Scholar

[24] 方凤满, 王起超. 土壤汞污染研究部进展. 土壤与环境, 2000, 9: 326-329. Google Scholar

[25] Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem, 1979, 51: 844-851. Google Scholar

[26] Leleyter L, Probst JL. A new sequential extraction procedure for the speciation of particulate trace elements in river sediments. Int J Environ Anal Chem, 1999, 73: 109-128. Google Scholar

[27] 包正铎, 王建旭, 冯新斌, 商立海. 贵州万山汞矿区污染土壤中汞的形态分布特征. 生态学杂志, 2011, 30: 907-913. Google Scholar

[28] 彭安, 王子健. 热分解法研究河流底质中汞的形态. 环境化学, 1984, 3: 53-57. Google Scholar

[29] Kim CS, Brown Jr GE, Rytuba JJ. Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy. Sci Total Environ, 2000, 261: 157-168. Google Scholar

[30] Bernaus A, Gaona X, Esbrí JM, Higueras P, Falkenberg G, Valiente M. Microprobe techniques for speciation analysis and geochemical characterization of mine environments: the mercury district of Almadén in Spain. Environ Sci Technol, 2006, 40: 4090-4095. Google Scholar

[31] Bernaus A, Gaona X, van Ree D, Valiente M. Determination of mercury in polluted soils surrounding a chlor-alkali plant: direct speciation by X-ray absorption spectroscopy techniques and preliminary geochemical characterisation of the area. Anal Chim Acta, 2006, 565: 73-80. Google Scholar

[32] Yin R, Feng X, Wang J, Li P, Liu J, Zhang Y, Chen J, Zheng L, Hu T. Mercury speciation and mercury isotope fractionation during ore roasting process and their implication to source identification of downstream sediment in the Wanshan mercury mining area, SW China. Chem Geol, 2013, 336: 72-79. Google Scholar

[33] Kim CS, Bloom NS, Rytuba JJ, Brown GE. Mercury speciation by X-ray absorption fine structure spectroscopy and sequential chemical extractions: a comparison of speciation methods. Environ Sci Technol, 2003, 37: 5102-5108. Google Scholar

[34] Terzano R, Santoro A, Spagnuolo M, Vekemans B, Medici L, Janssens K, Göttlicher J, Denecke MA, Mangold S, Ruggiero P. Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques. Environ Poll, 2010, 158: 2702-2709. Google Scholar

[35] 冯新斌. 贵州部分地区土壤挥发性汞释放通量及其影响因素的研究. 地质地球化学, 1995, 6: 123-125. Google Scholar

[36] Slowey AJ, Rytuba JJ, Brown GE. Speciation of mercury and mode of transport from Placer Gold Mine tailings. Environ Sci Technol, 2005, 39: 1547-1554. Google Scholar

[37] Jew AD, Kim CS, Rytuba JJ, Gustin MS, Brown GE. New technique for quantification of elemental Hg in mine wastes and its implications for mercury evasion into the atmosphere. Environ Sci Technol, 2010, 45: 412-417. Google Scholar

[38] Swain EB, Engstrom DR, Brigham ME, Henning TA, Brezonik PL. Increasing rates of atmospheric mercury deposition in midcontinental North America. Science, 1992, 257: 784-787. Google Scholar

[39] Zhang Q, Pan K, Kang S, Zhu A, Wang WX. Mercury in wild fish from high-altitude aquatic ecosystems in the Tibetan Plateau. Environ Sci Technol, 2014, 48: 5220-5228. Google Scholar

[40] Bloom NS. On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aq Sci, 1992, 49: 1010-1017. Google Scholar

[41] Harris HH, Pickering IJ, George GN. The chemical form of mercury in fish. Science, 2003, 301: 1203. Google Scholar

[42] George GN, MacDonald TC, Korbas M, Singh SP, Myers GJ, Watson GE, O'Donoghue JL, Pickering IJ. The chemical forms of mercury and selenium in whale skeletal muscle. Metallomics, 2011, 3: 1232-1237. Google Scholar

[43] Kuwabara JS, Arai Y, Topping BR, Pickering IJ, George GN. Mercury speciation in piscivorous fish from mining-impacted reservoirs. Environ Sci Technol, 2007, 41: 2745-2749. Google Scholar

[44] George GN, Singh SP, Prince RC, Pickering IJ. Chemical forms of mercury and selenium in fish following digestion with simulated gastric fluid. Chem Res Toxicol, 2008, 21: 2106-2110. Google Scholar

[45] Xing X, Du R, Li Y, Li B, Cai Q, Mo G, Gong Y, Chen Z, Wu Z. Structural change of human hair induced by mercury exposure. Environ Sci Technol, 2013, 47: 11214-11220. Google Scholar

[46] Li YF, Chen C, Li B, Li W, Qu L, Dong Z, Nomura M, Gao Y, Zhao J, Hu W, Zhao Y, Chai Z. Mercury in human hair and blood samples from people living in Wanshan mercury mine area, Guizhou, China: an XAS study. J Inorg Biochem, 2008, 102: 500-506. Google Scholar

[47] George GN, Singh SP, Myers GJ, Watson GE, Pickering IJ. The chemical forms of mercury in human hair: a study using X-ray absorption spectroscopy. J Biol Inorg Chem, 2010, 15: 709-715. Google Scholar

[48] Li YF, Chen C, Li B, Wang J, Gao Y, Zhao Y, Chai Z. Scalp hair as a biomarker in environmental and occupational mercury exposed populations: suitable or not? Environ Res, 2008, 107: 39-44. Google Scholar

[49] Korbas M, O'Donoghue JL, Watson GE, Pickering IJ, Singh SP, Myers GJ, Clarkson TW, George GN. The chemical nature of mercury in human brain following poisoning or environmental exposure. ACS Chem Neurosci, 2010, 1: 810-818. Google Scholar

[50] Cernichiari E, Myers GJ, Ballatori N, Zareba G, Vyas J, Clarkson T. The biological monitoring of prenatal exposure to methylmercury. NeuroToxicology, 2007, 28: 1015-1022. Google Scholar

[51] Falnoga I, Tusek-Znidaric M, Horvat M, Stegnar P. Mercury, selenium, and cadmium in human autopsy samples from Idrija residents and mercury mine workers. Environ Res, 2000, 84: 211-218. Google Scholar

[52] Clarkson TW, Magos L, Myers GJ. The toxicology of mercury-current exposures and clinical manifestations. N Engl J Med, 2003, 349: 1731-1737. Google Scholar

[53] Clarkson T. The biological properties and distribution of mercury. Biochem J, 1972, 130: 61-65. Google Scholar

[54] Rodrigues JL, Serpeloni JM, Batista BL, Souza SS, Barbosa Jr F. Identification and distribution of mercury species in rat tissues following administration of thimerosal or methylmercury. Arch Toxicol, 2010, 84: 891-896. Google Scholar

[55] Zhao J, Hu Y, Gao Y, Li Y, Li B, Dong Y, Chai Z. Mercury modulates selenium activity via altering its accumulation and speciation in garlic (Allium sativum). Metallomics, 2013, 5: 896-903. Google Scholar

[56] Kemner KM, Kelly SD, Lai B, Maser J, O'Loughlin EJ, Sholto-Douglas D, Cai Z, Schneegurt MA, Kulpa CF, Nealson KH. Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis. Science, 2004, 306: 686-687. Google Scholar

[57] Korbas M, Blechinger SR, Krone PH, Pickering IJ, George GN. Localizing organomercury uptake and accumulation in zebrafish larvae at the tissue and cellular level. Proc Natl Acad Sci USA, 2008, 105: 12108-12112. Google Scholar

[58] Korbas M, MacDonald TC, Pickering IJ, George GN, Krone PH. Chemical form matters: differential accumulation of mercury following inorganic and organic mercury exposures in zebrafish larvae. ACS Chem Biol, 2011, 7: 411-420. Google Scholar

[59] Shimojo N, Homma-Takeda S, Ohuchi K, Shinyashiki M, Sun GF, Kumagai Y. Mercury dynamics in hair of rats exposed to methylmercury by synchrotron radiation X-ray fluorescence imaging. Life Sci, 1997, 60: 2129-2137. Google Scholar

[60] Harris HH, Vogt S, Eastgate H, Legnini DG, Hornberger B, Cai Z, Lai B, Lay PA. Migration of mercury from dental amalgam through human teeth. J Synchrotron Rad, 2008, 15: 123-128. Google Scholar

[61] Snapp KR, Boyer DB, Peterson LC, Svare CW. The contribution of dental amalgam to mercury in blood. J Dental Res, 1989, 68: 780-785. Google Scholar

[62] Kingman A, Albertini T, Brown LJ. Mercury concentrations in urine and whole blood associated with amalgam exposure in a US military population. J Dental Res, 1998, 77: 461-471. Google Scholar

[63] Pařízek J, Ošťádalová I. The protective effect of small amounts of selenite in sublimate intoxication. Experientia, 1967, 23: 142-143. Google Scholar

[64] Ralston NVC, Ralston CR, Blackwell III JL, Raymond LJ. Dietary and tissue selenium in relation to methylmercury toxicity. Neuro Toxicology, 2008, 29: 802-811. Google Scholar

[65] Zhao J, Gao Y, Li YF, Hu Y, Peng X, Dong Y, Li B, Chen C, Chai Z. Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum). Environ Res, 2013, 125: 75-81. Google Scholar

[66] Horvat M, Nolde N, Fajon V, Jereb V, Logar M, Lojen S, Jacimovic R, Falnoga I, Liya Q, Faganeli J. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Sci Total Environ, 2003, 304: 231-256. Google Scholar

[67] Zhang H, Feng X, Larssen T, Qiu G, Vogt RD. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environ Health Perspect, 2010, 118: 1183-1188. Google Scholar

[68] Rothenberg SE, Feng X, Dong B, Shang L, Yin R, Yuan X. Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies. Environ Pollut, 2011, 159: 1283-1289. Google Scholar

[69] Meng B, Feng X, Qiu G, Anderson CWN, Wang J, Zhao L. Localization and speciation of mercury in brown rice with implications for Pan-Asian public health. Environ Sci Technol, 2014, 48: 7974-7981. Google Scholar

[70] Zhao J, Li Y, Li Y, Gao Y, Li B, Hu Y, Zhao Y, Chai Z. Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level. Metallomics, 2014, 6: 1951-1957. Google Scholar

[71] Marvin-DiPasquale M, Agee J, McGowan C, Oremland RS, Thomas M, Krabbenhoft D, Gilmour CC. Methyl-mercury degradation pathways: a comparison among three mercury-impacted ecosystems. Environ Sci Technol, 2000, 34: 4908-4916. Google Scholar

[72] Bizily SP, Rugh CL, Summers AO, Meagher RB. Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci USA, 1999, 96: 6808-6813. Google Scholar

[73] Oremland RS, Culbertson CW, Winfrey MR. Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation. Appl Environ Microbiol, 1991, 57: 130-137. Google Scholar

[74] Rajan M, Darrow J, Hua M, Barnett B, Mendoza M, Greenfield BK, Andrews JC. Hg L3 XANES study of mercury methylation in shredded Eichhornia crassipes. Environ Sci Technol, 2008, 42: 5568-5573. Google Scholar

[75] Patty C, Barnett B, Mooney B, Kahn A, Levy S, Liu Y, Pianetta P, Andrews JC. Using X-ray microscopy and Hg L3 XANES to study Hg binding in the rhizosphere of Spartina Cordgrass. Environ Sci Technol, 2009, 43: 7397-7402. Google Scholar

[76] 黄昌勇. 土壤学. 北京: 中国农业出版社, 2000. Google Scholar

[77] Lindberg SE, Harriss RC. Mercury-organic matter associations in estuarine sediments and interstitial water. Environ Sci Technol, 1974, 8: 459-462. Google Scholar

[78] Ravichandran M. Interactions between mercury and dissolved organic matter—a review. Chemosphere, 2004, 55: 319-331. Google Scholar

[79] Driscoll CT, Blette V, Yan C, Schofield CL, Munson R, Holsapple J. The role of dissolved organic carbon in the chemistry and bioavailability of mercury in remote Adirondack lakes. Water Air Soil Pollut, 1995, 80: 499-508. Google Scholar

[80] Dyrssen D, Wedborg M. The sulphur-mercury(II) system in natural waters. Water Air Soil Pollution, 1991, 56: 507-519. Google Scholar

[81] Xia K, Skyllberg UL, Bleam WF, Bloom PR, Nater EA, Helmke PA. X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances. Environ Sci Technol, 1998, 33: 257-261. Google Scholar

[82] Yoon SJ, Diener LM, Bloom PR, Nater EA, Bleam WF. X-ray absorption studies of CH3Hg+-binding sites in humic substances. Geochim Cosmochim Acta, 2005, 69: 1111-1121. Google Scholar

[83] Qian J, Skyllberg U, Frech W, Bleam WF, Bloom PR, Petit PE. Bonding of methyl mercury to reduced sulfur groups in soil and stream organic matter as determined by X-ray absorption spectroscopy and binding affinity studies. Geochim Cosmochim Acta, 2002, 66: 3873-3885. Google Scholar

[84] Skyllberg U, Bloom PR, Qian J, Lin CM, Bleam WF. Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ Sci Technol, 2006, 40: 4174-4180. Google Scholar

[85] Alberts JJ, Schindler JE, Miller RW, Nutter DE. Elemental mercury evolution mediated by Humic acid. Science, 1974, 184: 895-897. Google Scholar

[86] Gu B, Bian Y, Miller CL, Dong W, Jiang X, Liang L. Mercury reduction and complexation by natural organic matter in anoxic environments. Proc Natl Acad Sci USA, 2011, 108: 1479-1483. Google Scholar

[87] Lu W, Stillman MJ. Mercury-thiolate clusters in metallothionein. Analysis of circular dichroism spectra of complexes formed between a-metallothionein, apometallothionein, zinc metallothionein, and cadmium metallothionein and mercury(2+). J Am Chem Soc, 1993, 115: 3291-3299. Google Scholar

[88] Lu W, Kasrai M, Bancroft GM, Stillman MJ, Tan KH. Sulfur L-edge XANES study of zinc-, cadmium-, and mercury-containing metallothionein and model compounds. Inorg Chem, 1990, 29: 2561-2563. Google Scholar

[89] Jiang DT, Heald SM, Sham TK, Stillman MJ. Structures of the cadmium, mercury, and zinc thiolate clusters in metallothionein: XAFS study of Zn7-MT, Cd7-MT, Hg7-MT, and Hg18-MT formed from rabbit liver metallothionein 2. J Am Chem Soc, 1994, 116: 11004-11013. Google Scholar

[90] Dyrssen D, Wedborg M. The sulphur-mercury(II) system in natural waters. Water Air Soil Pollut, 1991, 56: 507-519. Google Scholar

[91] Carvalho CML, Lu J, Zhang X, Arner ESJ, Holmgren A. Effects of selenite and chelating agents on mammalian thioredoxin reductase inhibited by mercury: implications for treatment of mercury poisoning. FASEB J, 2011, 25: 370-381. Google Scholar

[92] Sasakura C, Suzuki K T. Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P. J Inorg Biochem, 1998, 71: 159-162. Google Scholar

[93] Ikemoto T, Kunito T, Watanabe I, Yasunaga G, Baba N, Miyazaki N, Petrov EA, Tanabe S. Comparison of trace element accumulation in Baikal seals (Pusa sibirica), Caspian seals (Pusa caspica) and northern fur seals (Callorhinus ursinus). Environ Pollut, 2004, 127: 83-97. Google Scholar

[94] Koeman JH, Peeters WHM, Koudstaal-Hol CHM, Tjioe PS, De Goeij JJM. Mercury-selenium correlations in marine mammals. Nature, 1973, 245: 385-386. Google Scholar

[95] Arai T, Ikemoto T, Hokura A, Terada Y, Kunito T, Tanabe S, Nakai I. Chemical forms of mercury and cadmium accumulated in marine mammals and seabirds as determined by XAFS analysis. Environ Sci Technol, 2004, 38: 6468-6474. Google Scholar

[96] Nakazawa E, Ikemoto T, Hokura A, Terada Y, Kunito T, Tanabe S, Nakai I. The presence of mercury selenide in various tissues of the striped dolphin: evidence from μ-XRF-XRD and XAFS analyses. Metallomics, 2011, 3: 719-725. Google Scholar

[97] Parizek J, Ostadalova I. The protective effect of small amounts of selenite in sublimate intoxication. Experientia, 1967, 23: 142-143. Google Scholar

[98] Naganuma A, Ishii Y, Imura N. Effect of administration sequence of mercuric chloride and sodium selenite on their fates and toxicities in mice. Ecotoxicol Environ Saf, 1984, 8: 572-580. Google Scholar

[99] Hansen JC, Kristensen P, Al-Masri SN. Mercury/selenium interaction. A comparative study on pigs. Nord Veterinaermed, 1981, 33: 57-60. Google Scholar

[100] Hill CH. Reversal of selenium toxicity in chicks by mercury, copper, and cadmium. J Nutr, 1974, 104: 593-598. Google Scholar

[101] Naganuma A, Imura N. Changes in distribution of mercury and selenium in soluble fractions of rabbit tissues after simultaneous administration. Pharmacol Biochem Behav, 1980, 13: 537-544. Google Scholar

[102] Ganther HE, Goudie C, Sunde ML, Kopecky MJ, Wagner P, Sang-Hwan O, Hoekstra WG. Selenium: relation to decreased toxicity of methylmercury added to diets containing tuna. Science, 1972, 175: 1122-1124. Google Scholar

[103] Seppanen K, Kantola M, Laatikainen R, Nyyssonen K, Valkonen VP, Kaarlopp V, Salonen JT. Effect of supplementation with organic selenium on mercury status as measured by mercury in pubic hair. J Trace Elem Med Biol, 2000, 14: 84-87. Google Scholar

[104] Li YF, Chen C, Dong Z, Li B, Gao Y, Qu L, Wang T, Fu X, Zhao Y, Chai Z. Effect of organic selenium supplementation in long-term mercury-exposed residents from Wanshan, China: the increased mercury excretion and decreased oxidative damage. Environ Sci Technol, 2012, 46: 11313-11318. Google Scholar

[105] Li YF, Chen C, Li B, Wang Q, Wang J, Gao Y, Zhao Y, Chai Z. Simultaneous speciation of selenium and mercury in human urine samples from long-term mercury-exposed populations with supplementation of selenium-enriched yeast by HPLC-ICP-MS. J Anal At Spectrom, 2007, 22: 925-930. Google Scholar

[106] 李会红, 蒲钔, 汲培文. 高能物理, 同步辐射和核技术领域的重大项目综述. 中国科学基金, 2009, 5: 301-304. Google Scholar

[107] Suzuki KT, Sasakura C, Yoneda S. Binding sites for the (Hg-Se) complex on selenoprotein P. Biochim Biophys Acta, 1998, 1429: 102-112. Google Scholar

[108] Yoneda S, Suzuki KT. Detoxification of mercury by selenium by binding of equimolar Hg-Se complex to a specific plasma protein. Toxicol Appl Pharmacol, 1997, 143: 274-280. Google Scholar

[109] Gailer J, George GN, Pickering IJ, Madden S, Prince RC, Yu EY, Denton MB, Younis HS, Aposhian HV. Structural basis of the antagonism between inorganic mercury and selenium in mammals. Chem Res Toxicol, 2000, 13: 1135-1142. Google Scholar

[110] Korbas M, Percy A, Gailer J, George G. A possible molecular link between the toxicological effects of arsenic, selenium and methylmercury: methylmercury(II) seleno bis(S-glutathionyl) arsenic(III). J Biol Inorg Chem, 2008, 13: 461-470. Google Scholar

[111] 邓彪, 余笑寒, 徐红杰. 同步辐射微束X射线荧光CT的计算机模拟. 核技术, 2007, 30: 5-11. Google Scholar

[112] Roesijadi G. Mercury-binding proteins from the marine mussel, Mytilus edulis. Environ Health Perspect, 1986, 65: 45-48. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号