SCIENTIA SINICA Chimica, Volume 45, Issue 6: 581-596(2015) https://doi.org/10.1360/N032015-00006

Preparation, modification, self-assembly and surface enhanced Raman scattering of gold nanorods and its biomedical application

More info
  • AcceptedFeb 28, 2015
  • PublishedJun 2, 2015


Nanoparticle as a signal sensing unit in chemical and biological sensing applications has attracted wide attention. The features above are closely related with the surface plasmon resonance generated by the interactions between the light and metal nanostructures. Surface-enhanced Raman scattering (SERS) refers to an abnormal surface optical phenomenon Raman spectra of the analyte adsorbed on metal nanostructures can be significantly enhanced under laser irradiation. In recent years SERS has been widely used in the substance detection and biological sensing which has achieved significant development and shown great potential applications in the biomedical field. The progress of preparation methods, surface modification of gold nanorods, as well as conjugate method of biological molecules are reviewed in this paper. From the angle of surface enhanced Raman scattering (SERS), the self-assemblies of 1D, 2D and 3D based on gold nanorods' SERS are systematically expounded. At last, the paper introduces the most representative of gold nanorods applied research on SERS in biomedical detection and imaging.


[1] Rycenga M, Cobley CM, Zeng J, Li WY, Moran CH, Zhang Q, Qin D, Xia YN. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev, 2011, 111: 3669–3712

[2] 杨玉东, 徐菁华, 杨林梅, 潘卫三. 金纳米棒的光学性质及其在癌症诊断和光热疗法中的应用. 应用激光, 2009, 3: 260–264

[3] Lombardi JR, Birke RL. A unified view of surface-enhanced Raman scattering. Accounts Chem Res, 2009, 42: 734–742

[4] Li JL, Gu M. Gold-nanoparticle-enhanced cancer photothermal therapy. I EEE J Sel Top Quants, 2010, 16: 989–996

[5] 杨玉东, 徐菁华, 杨林梅. 金纳米棒的表面改性及其在生物医学领域的应用. 化学通报, 2010, 73: 195–204

[6] Gaiduk A, Ruijgrok PV, Yorulmaz M, Orrit M. Making gold nanoparticles fluorescent for simultaneous absorption and fluorescence detection on the single particle level. Phys Chem Chem Phys, 2011, 13: 149–153

[7] Kumar J, Thomas KG. Surface-enhanced Raman spectroscopy: investigations at the nanorod edges and dimer junctions. J Phys Chem Lett, 2011, 2: 610–615

[8] Ramos J, Rege K. Poly(aminoether)-gold nanorod assemblies for shRNA plasmid-induced gene silencing. Mol Pharm, 2013, 10: 4107–4119

[9] Amal Raj M, Abraham John S. Fast growth of gold nanorods on solid substrate using electrochemically deposited gold seeds. Electrochem Commun, 2014, 45: 27–31

[10] Abdelrasoul GN, Cingolani R, Diaspro A, Athanassioua A, Pignatellia F. Photochemical synthesis: effect of UV irradiation on gold nanorods morphology. J Photochem Photobiol A: Chem, 2014, 275: 7–11

[11] Sharma MK, Ambolikar AS, Aggarwal SK. Electrochemical synthesis of gold nanorods in track-etched polycarbonate membrane using removable mercury cathode. In: CHIICH R, eds. Nanotechnology for Sustainable Development. Berlin: Springer International Publishing, 2014. 349–358

[12] Ye XC, Jin LH, Caglayan H, Chen J, Xing GZ, Zheng C, Doan-Nguyen V, Kang YJ, Engheta N, Kagan CR, Murray CB. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano, 2012, 6: 2804–2817

[13] Zhang L, Xia K, Lu Z, Li GP, Chen J, Deng Y, Li S, Zhou FM, He NY. Efficient and facile synthesis of gold nanorods with finely tunable plasmonic peaks from visible to near-IR range. Chem Mater, 2014, 26: 1794–1798

[14] Jana NR, Gearheart L, Murphy CJ. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir, 2001, 17: 6782–6786

[15] Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B, 2001, 105: 4065–4067

[16] Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater, 2003, 15: 1957–1962

[17] Jana NR. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small, 2005, 1: 875–882

[18] Ye XC, Jin LH, Caglayan H, Chen J, Xing GZ, Zheng C, Doan-Nguyen V, Kang YJ, Engheta N, Kagan CR, Murray CB. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano, 2012, 6: 2804–2817

[19] Ye X, Gao Y, Chen J, Reifsnyder DC, Zheng C, Murray CB. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett, 2013, 13: 2163–2171

[20] Lohse SE, Murphy CJ. The quest for shape control: a history of gold nanorod synthesis. Chem Mater, 2013, 25: 1250–1261

[21] Edgar JA, McDonagh AM, Cortie MB. Formation of gold nanorods by a stochastic “popcorn” mechanism. ACS Nano, 2012, 6: 1116–1125

[22] Vigderman L, Khanal BP, Zubarev ER. Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv Mater, 2012, 24: 4811–4841

[23] Carbó-Argibay E, Rodríguez-González B, Gómez-Graña S, Guerrero-Martínez A, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM. The crystalline structure of gold nanorods revisited: evidence for higher-index lateral facets. Angew Chem Int Ed, 2010, 122: 9587–9590

[24] Khanal BP, Zubarev ER. Rings of nanorods. Angewe Chem Int Ed, 2007, 46: 2195–2198

[25] Wijaya A, Hamad-Schifferli K. Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange. Langmuir, 2008, 24: 9966–9969

[26] Wilson CG, Sisco PN, Gadala-Maria FA, Murphyb CJ, Goldsmith EC. Polyelectrolyte-coated gold nanorods and their interactions with type I collagen. Biomaterials, 2009, 30: 5639–5648

[27] Alkilany AM, Nagaria PK, Wyatt MD, Murphy CJ. Cation exchange on the surface of gold nanorods with a polymerizable surfactant: polymerization, stability, and toxicity evaluation. Langmuir, 2010, 26: 9328–9333

[28] Wang C, Ma Z, Wang T, Su Z. Synthesis, assembly, and biofunctionaliza-tion of silica-coated gold nanorods for colorimetric biosensing. Adv Funct Mater, 2006, 16: 1673–1678

[29] Wang C, Chen Y, Wang T, Ma Z, Su Z. Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing. Adv Funct Mater, 2008, 18: 355–361

[30] Choi WI, Kim JY, Kang C, Byeon CC, Kim YH, Tae G. Tumor regression in vivo by pho-tothermal therapy based on gold-nanorod-loaded, functional nanocar-riers. ACS Nano, 2011, 5: 1995–2003

[31] Niidome Y, Honda K, Higashimoto K, Kawazumi H, Yamada S, Nakashima N, Sasaki Y, Ishidac Y, Kikuchi J. Surface modification of gold nanorods with synthetic cationic lipids. Chem Commun, 2007, 36: 3777–3779

[32] Ren F, Bhana S, Norman DD, Johnson J, Xu LJ, Baker DL, Parrill AL, Huang XH. Gold nanorods carrying paclitaxel for photothermal-chemotherapy of cancer. Bioconjugate Chem, 2013, 24: 376–386

[33] Wang CH, Chang CW, Peng CA. Gold nanorod stabilized by thiolated chitosan as photothermal absorber for cancer cell treatment. J Nanopart Res, 2011, 13: 2749–2758

[34] Gaiduk A, Yorulmaz M, Ruijgrok PV, Orrit M. Room-temperature detection of a single molecule's absorption by photothermal contrast. Science, 2010, 330: 353–356

[35] 王爽, 金晶, 皋伟, 李季锋, 邓慧华, 陆祖宏. 表面修饰聚合物自组装多层的金纳米棒的表面增强荧光. 科学通报, 2012, 57: 408–411

[36] Takahashi H, Niidome T, Kawano T, Yamada S, Niidome Y. Surface modification of gold nanorods using layer-by-layer technique for cellular uptake. J Nanopart Res, 2008, 10: 221–228

[37] Jang B, Park JY, Tung CH, Kim IH, Choi Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano, 2011, 5: 1086–1094

[38] 杨玉东, 徐菁华, 杨林梅. 金纳米棒的表面修饰技术及其功能化的研究进展. 化工进展, 2010, 3: 389–396

[39] Reznickova A, Kolska Z, Siegel J, Svorcik V. Grafting of gold nanoparticles and nanorods on plasma-treated polymers by thiols. J Mater Sci, 2012, 47: 6297–6304

[40] Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL. Nanohole-enhanced Raman scattering. Nano Lett, 2004, 4: 2015–2018

[41] Le Ru EC, Etchegoin PG, Grand J, Félidjb N, Aubardb J, Lévib G, Hohenauc A, Krennc JR. Surface enhanced Raman spectroscopy on nanolithography-prepared substrates. Curr Appl Phys, 2008, 8: 467–470

[42] Masui K, Shoji S, Asaba K, Rodgers TC, Jin F, Duan XM, Kawata S. Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization. Opt Express, 2011, 19: 22786–22796

[43] Hubert H Girault Gamby J, Rudolf A, Abid M, Girault HH, Deslouis C, Tribollet B. Polycarbonate microchannel network with carpet of gold nanowires as SERS-active device. Lab Chip, 2009, 9: 1806–1808

[44] Xu BB, Zhang R, Wang H, Liu XQ, Wang L, Ma ZC, Chen QD, Xiao XZ, Han B, Sun HB. Laser patterning of conductive gold micronanostructures from nanodots. Nanoscale, 2012, 4: 6955–6958

[45] 张然, 肖鑫泽, 吕超, 骆杨, 徐颖. 金纳米棒的飞秒激光组装研究. 物理学报, 2014, 63: 014206

[46] Zhang R, Xu BB, Liu XQ, Zhang YL, Xu Y, Chen QD, Sun HB. Highly efficient SERS test strips. Chem Commun, 2012, 48: 5913–5915

[47] Ma Z, Liu Q, Yang H, Runyan RB, Eisenberg CA, Xu M, Borg TK, Markwald R, Wang Y, Gao BZ. Laser patterning for the study of MSC cardiogenic differentiation at the single-cell level. Light Sci Appl, 2013, 2: e68

[48] 杨玉东, 徐菁华, 杨林梅. 金纳米棒的合成与自组装的研究进展. 化工进展, 2010, 28: 1583–1595

[49] Willets KA, van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem, 2007, 58: 267–297

[50] Kuncicky DM, Prevo BG, Velev OD. Controlled assembly of SERS substrates templated by colloidal crystal films. J Mater Chem, 2006, 16: 1207–1211

[51] Alexander KD, Skinner K, Zhang S, Wei H, Lopez R. Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate. Nano Lett, 2010, 10: 4488–4493

[52] Fukami K, Chourou ML, Miyagawa R, Muñoz-Noval Á, Sakka T, Manso-Silván M, Martín-Palma RJ, Ogata YH. Gold nanostructures for surface-enhanced Raman spectroscopy, prepared by electrodeposition in porous silicon. Materials, 2011, 4: 791–800

[53] Batista EA, dos Santos DP, Andrade GF, Sant'Ana AC, Brolo AG, Temperini ML. Using polycarbonate membranes as templates for the preparation of au nanostructures for surface-enhanced Raman scattering. J Nanosci Nanotechnol, 2009, 9: 3233–3238

[54] 叶通, 高云, 尹彦. 利用聚碳酸酯模板制备的金纳米棒的表面增Raman散射效应研究. 物理学报, 2013, 62: 127801

[55] Lee A, Andrade GFS, Ahmed A, Souza ML, Coombs N, Tumarkin E, Liu K, Gordon R, Brolo AG, Kumacheva E. Probing dynamic generation of hot-spots in self-assembled chains of gold nanorods by surface-enhanced Raman scattering. J Am Chem Soc, 2011, 133: 7563–7570

[56] Kawamura G, Yang Y, Nogami M. Facile assembling of gold nanorods with large aspect ratio and their surface-enhanced Raman scattering properties. Appl Phys Lett, 2007, 90: 261908

[57] Lee A, Ahmed A, dos Santos D P, Coombs N, Park JI, Gordon R, Brolo AG, Kumacheva E. Side-by-side assembly of gold nanorods reduces ensemble-averaged SERS intensity. J Phys Chem C, 2012, 116: 5538–5545

[58] McLintock A, Hunt N, Wark AW. Controlled side-by-side assembly of gold nanorods and dye molecules into polymer-wrapped SERRS-active clusters. Chem Commun, 2011, 47: 3757–3759

[59] Kuemin C, Stutz R, Spencer ND, Wolf H. Precise placement of gold nanorods by capillary assembly. Langmuir, 2011, 27: 6305–6310

[60] Lee CH, Tian L, Singamaneni S. Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl Mater Inter, 2010, 2: 3429–3435

[61] Shao J, Tong L, Tang S, Guo ZN, Zhang H, Li PH, Wang HY, Du C, Yu XF. PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection. ACS Appl Mater Inter, 2015, 7: 5397–5399

[62] Wang Y, Lee K, Irudayaraj J. SERS aptasensor from nanorod-nanoparticle junction for protein detection. Chem Commun, 2010, 46: 613–615

[63] Xu L, Kuang H, Xu C, Ma W, Wang L, Kotov NA. Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells. J Am Chem Soc, 2012, 134: 1699–1709

[64] Zhang CL, Lv KP, Cong HP, Yu SH. Controlled assemblies of gold nanorods in PVA nanofiber matrix as flexible free-standing SERS substrates by electrospinning. Small, 2012, 8: 648–653

[65] Roskov KE, Kozek KA, Wu WC, Chhetri RK, Oldenburg AL, Spontak RJ, Tracy JB. Long-range alignment of gold nanorods in electrospun polymer nano/microfibers. Langmuir, 2011, 27: 13965–13969

[66] Lee CH, Tian L, Abbas A, Kattumenu R, Singamaneni S. Directed assembly of gold nanorods using aligned electrospun polymer nanofibers for highly efficient SERS substrates. Nanotechnology, 2011, 22: 275311

[67] Zhang CL, Lv KP, Huang HT, Cong HP, Yu SH. Co-assembly of Au nanorods with Ag nanowires within polymer nanofiber matrix for enhanced SERS property by electrospinning. Nanoscale, 2012, 4: 5348–5355

[68] Xie Z, Tao J, Lu Y, Lin KQ, Yan J, Wang P, Ming H. Polymer optical fiber SERS sensor with gold nanorods. Opt Commun, 2009, 282: 439–442

[69] Doherty MD, Murphy A, Pollard RJ, Dawson P. Surface-enhanced Raman scattering from metallic nanostructures: bridging the gap between the near-field and far-field responses. Phys Rev X, 2013, 3: 011001

[70] Damm S, Lordan F, Murphy A, McMillen M, Pollard R, Rice JH. Application of AAO matrix in aligned gold nanorod array substrates for surface-enhanced fluorescence and Raman scattering. Plasmonics, 2014, 9: 1371–1376

[71] Peng B, Li G, Li D, Dodson S, Zhang Q, Zhang J, Lee YH, Demir HV, Ling XY, Xiong Q. Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants. ACS Nano, 2013, 7: 5993–6000

[72] Martin A, Schopf C, Pescaglini A, Wang JJ, Iacopino D. Facile formation of ordered vertical arrays by droplet evaporation of Au nanorod organic solutions. Langmuir, 2014, 30: 10206–10212

[73] Martín A, Pescaglini A, Schopf C, Scardaci V, Coull R, Byrne L, Iacopino D. Surface-enhanced Raman scattering of 4-aminobenzenethiol on Au nanorod ordered arrays. J Phys Chem C, 2014, 118: 13260–13267

[74] Hu X, Cheng W, Wang T, Wang Y, Wang E, Dong S. Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films. J Phys Chem B, 2005, 109: 19385–19389

[75] Alvarez-Puebla RA, Agarwal A, Manna P, Khanal BP, Aldeanueva-Potel P, Carbó-Argibay E, Pazos-Pérez N, Vigderman L, Zubarev ER, Kotov NA, Liz-Marzán LM. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc Natl Acad Sci USA, 2011, 108: 8157–8161

[76] Alvarez-Puebla RA, Zubarev ER, Kotov NA, Liz-Marzána LM. Self-assembled nanorod supercrystals for ultrasensitive SERS diagnostics. Nano Today, 2012, 7: 6–9

[77] Xie Y, Guo SM, Ji YL, Guo C, Liu X, Chen Z, Wu X, Liu Q. Self-assembly of gold nanorods into symmetric superlattices directed by OH-terminated hexa (ethylene glycol) alkanethiol. Langmuir, 2011, 27: 11394–11400

[78] Guerrero-Martínez A, Pérez-Juste J, Carbó-Argibay E, Tardajos G, Liz-Marzán LM. Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angew Chem Int Ed, 2009, 48: 9484–9488

[79] Apte A, Bhaskar P, Das R, Chaturvedi S, Poddar P, Kulkarni S. Self-assembled vertically aligned gold nanorod superlattices for ultra-high sensitive detection of molecules. Nano Res, 2015, 8: 907–919

[80] Xiao J, Li Z, Ye X, Ma Y, Qi L. Self-assembly of gold nanorods into vertically aligned, rectangular microplates with a supercrystalline structure. Nanoscale, 2014, 6: 996–1004

[81] Tuyen LD, Liu AC, Huang CC, Tsai PC, Lin JH, Wu CW, Chau LK, Yang TS, Minh le Q, Kan HC, Hsu CC. Doubly resonant surface-enhanced Raman scattering on gold nanorod decorated inverse opal photonic crystals. Opt Express, 2012, 20: 29266–29275

[82] Tsvetkov MY, Khlebtsov BN, Khanadeev VA, Bagratashvili VN, Timashev PS, Samoylovich MI, Khlebtsov NG. SERS substrates formed by gold nanorods deposited on colloidal silica films. Nano Res Lett, 2013, 8: 1–9

[83] Sreeprasad TS, Pradeep T. Reversible assembly and disassembly of gold nanorods induced by EDTA and its application in SERS tuning. Langmuir, 2011, 27: 3381–3390

[84] Zhihui SFCKL, Heyou WYLDH. Application of SERS techniques in diagnosis and bioassay. Prog Chem, 2012, 12: 013

[85] 杨玉东, 杨林梅, 徐菁华. 拉曼光谱在癌症诊断中的研究进展. 激光生物学报, 2009, 18: 700–705

[86] Nikoobakht B, Wang J, EI-Sayed MA. Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition. Chem Phys Lett, 2002, 366: 17–23

[87] 郭红燕, 芦玲慧, 吴超, 潘建高, 胡家文. SERS标记的金纳米棒探针用于免疫检测. 化学学报, 2009, 67: 1603–1608

[88] Kang T, Yoo SM, Yoon I, Lee SY, Kim B. Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett, 2010, 10: 1189–1193

[89] Tamer U, Boyacı İH, Temur E, Zengin A, Dincer İ, Elerman Y. Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application. J Nane Res, 2011, 13: 3167–3176

[90] Guven B, Boyacı İH, Tamer U, Çalıkc P. A rapid method for detection of genetically modified organisms based on magnetic separation and surface-enhanced Raman scattering. Analyst, 2012, 137: 202–208

[91] Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett, 2007, 7: 1591–1597

[92] Zong S, Wang Z, Yang J, Cui Y. Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity. Anal Chem, 2011, 83: 4178–4183

[93] 宗慎飞, 王著元, 杨晶, 崔一平. 聚合物电解质包裹金核银壳纳米棒制备双模式光学细胞成像探针. 科学通报, 2013, 58: 601–607

[94] Zong S, Wang Z, Yang J, Wang C, Xu S, Cui Y. A SERS and fluorescence dual mode cancer cell targeting probe based on silica coated Au@Ag core-shell nanorods. Talanta, 2012, 97: 368–375

[95] Jiang L, Qian J, Cai F, He S. Raman reporter-coated gold nanorods and their applications in multimodal optical imaging of cancer cells. Anal Bioanal Chem, 2011, 400: 2793–2800

[96] KyuáLee E, YoungáShin S, WookáSon S, Lee EK, Shin SY, Lee YH, Son SW, Oh CH, Song JM, Kang SH, Choo J. SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Phys Chem Chem Phys, 2009, 11: 7444–7449

[97] Wang Z, Zong S, Yang J, Li J, Cui Y. Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells. Biosens Bioelectron, 2011, 26: 2883–2889

[98] 江黎. 纳米金颗粒局域表面等离子共振特性应用于光学生物传感及成像. 博士学位论文. 杭州: 浙江大学, 2013. 1–127

[99] Qian J, Jiang L, Cai F, Wang D, He S. Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging. Biomaterials, 2011, 32: 1601–1610

[100] Jokerst JV, Cole AJ, Bohndiek SE, Gambhir SS. Gold nanorods combine photoacoustic and Raman imaging for detection and treatment of ovarian cancer. In: Proceedings of SPIE BiOS. San Francisco: International Society for Optics and Photonics, 2014. 894366

[101] Bohndiek SE, Wagadarikar A, Zavaleta CL, Van de Sompel D, Garai E, Jokerst JV, Yazdanfar S, Gambhir SS. A small animal Raman instrument for rapid, wide-area, spectroscopic imaging. Proc Natl Acad Sci USA, 2013, 110: 12408–12413

[102] Zhang Y, Qian J, Wang D, Wang Y, He S. Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy. Angew Chem Int Ed, 2013, 52: 1148–1151

[103] von Maltzahn G, Centrone A, Park JH, Ramanathan R, Sailor MJ, Hatton TA, Bhatia SN. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater, 2009, 21: 3175–3180

[104] Park JH, von Maltzahn G, Ong LL, Centrone A, Hatton TA, Ruoslahti E, Bhatia SN, Sailor MJ. Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv Mater, 2010, 22: 880–885

[105] Song J, Pu L, Zhou J, Duan B, Duan H. Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods. ACS Nano, 2013, 7: 9947–9960

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有