logo

SCIENTIA SINICA Chimica, Volume 46, Issue 12: 1317-1329(2016) https://doi.org/10.1360/N032016-00103

Pseudo ionic liquids and their applications

More info
  • ReceivedMay 11, 2016
  • AcceptedAug 2, 2016

Abstract

Abstract: As rising green solvents, pseudo ionic liquids are environmentally friendly, cheap, simple to prepare, biocompatible which promise them good prospects for application in organic catalysis, materials preparation, selective separation, electro-deposition, etc. The definition, classification and current situation of pseudo ionic liquids were introduced. The similarities and differences among pseudo ionic liquids and relative nomenclatures were discussed. The effect of neutral ligands and applications of pseudo ionic liquids were concluded. Taken phase change energy storage as an example, the feasibilities of pseudo ionic liquids used in new fields were analyzed. Finally, the development directions and foreground of pseudo ionic liquids were shed light.


Funded by

国家自然科学基金(21073217,U1407205)

中国科学院青年创新促进会(2015351资助项目)


References

[1] Abbott AP, Davies DL. Ionic liquids. UK Patent, 9906829.8, 1999-03-24. Google Scholar

[2] Abbott AP, Davies DL, Capper G, Rasheed RK, Tambyrajah V. Ionic liquids and their use. EP Patent, 1322591, 2003-02-07. Google Scholar

[3] Abbott AP, Capper G, Davies DL, Rasheed RK. Chem Eur J, 2004, 10: 3769-3774 CrossRef PubMed Google Scholar

[4] Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK. J Am Chem Soc, 2004, 126: 9142-9147 CrossRef PubMed Google Scholar

[5] 陈志刚, 宗敏华, 顾振新. 有机化学, 2009, 29: 672–680. Google Scholar

[6] 何昱德. 烷基咪唑类离子液体的规模化合成研究. 工程硕士学位论文. 兰州: 兰州大学, 2015. Google Scholar

[7] 李志勇, 裴渊超, 王慧勇, 赵玉灵, 王键吉. 科学通报, 2015, 6: 2457–2465. Google Scholar

[8] Skopek MA, Mohamoud MA, Ryder KS, Hillman AR. Chem Commun, 2009: 935–937. Google Scholar

[9] Abbott AP, Cullis PM, Gibson MJ, Harris RC, Raven E. Green Chem, 2007, 9: 868-872 CrossRef Google Scholar

[10] Choi YH, van Spronsen J, Dai Y, Verberne M, Hollmann F, Arends IWCE, Witkamp GJ, Verpoorte R. Plant Physiol, 2011, 156: 1701-1705 CrossRef PubMed Google Scholar

[11] Biswas A, Shogren RL, Stevenson DG, Willett JL, Bhowmik PK. Carbohydrate Polymers, 2006, 66: 546-550 CrossRef Google Scholar

[12] Douglas JA. Philos Mag, 1907, 13: 761–762. Google Scholar

[13] Francisco M, van den Bruinhorst A, Kroon MC. Green Chem, 2012, 14: 2153-2157 CrossRef Google Scholar

[14] Smith EL, Abbott AP, Ryder KS. Chem Rev, 2014, 114: 11060-11082 CrossRef PubMed Google Scholar

[15] Abbott AP, Barron JC, Ryder KS, Wilson D. Chem Eur J, 2007, 13: 6495-6501 CrossRef PubMed Google Scholar

[16] 贾永忠, 景燕, 张超, 王怀有. 类离子液体. 北京: 化学工业出版社, 2015. Google Scholar

[17] Francisco M, van den Bruinhorst A, Kroon MC. Angew Chem Int Ed, 2013, 52: 3074-3085 CrossRef PubMed Google Scholar

[18] Dong K, Zhang S. Chem Eur J, 2012, 18: 2748-2761 CrossRef PubMed Google Scholar

[19] Passos H, Tavares DJP, Ferreira AM, Freire MG, Coutinho JAP. ACS Sustain Chem Eng, 2016, 4: 2881-2886 CrossRef Google Scholar

[20] 宁汇, 侯民强, 杨德重, 康欣晨, 韩布兴. 物理化学学报, 2013, 29: 2107–2113. Google Scholar

[21] 章霞. 室温离子液体电导率等输运特性的研究. 硕士学位论文. 南京: 南京邮电大学, 2014. Google Scholar

[22] 王怀有. 系列含镁类离子液体性质、结构及电化学行为研究. 博士学位论文. 西宁: 中国科学院大学(青海盐湖研究所), 2014. Google Scholar

[23] Abbott AP, Harris RC, Ryder KS, D'Agostino C, Gladden LF, Mantle MD. Green Chem, 2011, 13: 82-90 CrossRef Google Scholar

[24] 岳都元. ChCl-MgCl2型(类)离子液体的制备、表征及电化学应用研究. 博士学位论文. 西宁: 中国科学院大学(青海盐湖研究所), 2013. Google Scholar

[25] Papadopoulou AA, Efstathiadou E, Patila M, Polydera AC, Stamatis H. Ind Eng Chem Res, 2016, 55: 5145-5151 CrossRef Google Scholar

[26] Rodriguez NR, Ferre Guell J, Kroon MC. J Chem Eng Data, 2016, 61: 865-872 CrossRef Google Scholar

[27] Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM. Thermochimica Acta, 2011, 515: 67-72 CrossRef Google Scholar

[28] AlOmar MK, Hayyan M, Alsaadi MA, Akib S, Hayyan A, Hashim MA. J Mol Liquids, 2016, 215: 98-103 CrossRef Google Scholar

[29] de Morais P, Gonçalves F, Coutinho JAP, Ventura SPM. ACS Sustain Chem Eng, 2015, 3: 3398-3404 CrossRef Google Scholar

[30] Ali E, Hadj-Kali MK, Mulyono S, Alnashef I. Int J Greenhouse Gas Control, 2016, 47: 342-350 CrossRef Google Scholar

[31] Trivedi TJ, Lee JH, Lee HJ, Jeong YK, Choi JW. Green Chem, 2016, 18: 2834-2842 CrossRef Google Scholar

[32] Zhang C, Jia Y, Jing Y, Wang H, Hong K. J Mol Model, 2014, 20: 107–111. Google Scholar

[33] 方玉堂, 金策, 梁向晖, 高学农, 张正国. 化工学报, 2015, 66: 5142–5148. Google Scholar

[34] El-Bassuoni AMA, Tayeb AM, Helwa NH, Fathy AM. Renew Energ, 2003, 28: 1629-1643 CrossRef Google Scholar

[35] Wang GN, Dai Y, Hu XB, Xiao F, Wu YT, Zhang ZB, Zhou Z. J Mol Liquids, 2012, 168: 17-20 CrossRef Google Scholar

[36] Salazar J, Dorta R. Synlett, 2004: 1318–1320. Google Scholar

[37] Doi H, Song X, Minofar B, Kanzaki R, Takamuku T, Umebayashi Y. Chem Eur J, 2013, 19: 11522-11526 CrossRef PubMed Google Scholar

[38] Kelley SP, Narita A, Holbrey JD, Green KD, Reichert WM, Rogers RD. Cryst Growth Des, 2013, 13: 965-975 CrossRef Google Scholar

[39] Naser J, Mjalli FS, Gano ZS. J Chem Eng Data, 2016, 61: 1608-1615 CrossRef Google Scholar

[40] Li Q, Jiang J, Li G, Zhao W, Zhao X, Mu T. Sci China Chem, 2016, 59: 571-577 CrossRef Google Scholar

[41] Zhao BY, Xu P, Yang FX, Wu H, Zong MH, Lou WY. ACS Sustain Chem Eng, 2015, 3: 2746-2755 CrossRef Google Scholar

[42] Pal M, Rai R, Yadav A, Khanna R, Baker GA, Pandey S. Langmuir, 2014, 30: 13191-13198 CrossRef PubMed Google Scholar

[43] Abo-Hamad A, Hayyan M, AlSaadi MAH, Hashim MA. Chem Eng J, 2015, 273: 551-567 CrossRef Google Scholar

[44] Mano F, Aroso IM, Barreiros S, Borges JP, Reis RL, Duarte ARC, Paiva A. ACS Sustain Chem Eng, 2015, 3: 2504-2509 CrossRef Google Scholar

[45] 熊兴泉, 韩骞, 石霖, 肖上运, 毕成. 有机化学, 2016, 36: 480–489. Google Scholar

[46] Wagle DV, Zhao H, Baker GA. Acc Chem Res, 2014, 47: 2299-2308 CrossRef PubMed Google Scholar

[47] Pulati N, Tighe T, Painter P. Energ Fuels, 2016, 30: 249-255 CrossRef Google Scholar

[48] Rodriguez NR, Requejo PF, Kroon MC. Ind Eng Chem Res, 2015, 54: 11404-11412 CrossRef Google Scholar

[49] Gano ZS, Mjalli FS, Al-Wahaibi T, Al-Wahaibi Y, AlNashef IM. Ind Eng Chem Res, 2014, 53: 6815-6823 CrossRef Google Scholar

[50] Tang B, Zhang H, Row KH. J Sep Sci, 2015, 38: 1053-1064 CrossRef PubMed Google Scholar

[51] 侯玉翠, 王震, 任树行, 吴卫泽. 科学通报, 2015, 60: 2490–2499. Google Scholar

[52] 何志强. CO2在氯化胆碱/多元醇低共熔溶剂中的溶解度及其混合物电导率的研究. 硕士学位论文. 上海: 上海大学, 2014. Google Scholar

[53] Sun S, Niu Y, Xu Q, Sun Z, Wei X. Ind Eng Chem Res, 2015, 54: 8019-8024 CrossRef Google Scholar

[54] García G, Aparicio S, Ullah R, Atilhan M. Energ Fuels, 2015, 29: 2616-2644 CrossRef Google Scholar

[55] Abbott AP, Capper G, Davies DL, McKenzie KJ, Obi SU. J Chem Eng Data, 2006, 51: 1280-1282 CrossRef Google Scholar

[56] Jenkin GRT, Al-Bassam AZM, Harris RC, Abbott AP, Smith DJ, Holwell DA, Chapman RJ, Stanley CJ. Miner Eng, 2016, 87: 18-24 CrossRef Google Scholar

[57] García A, Rodríguez-Juan E, Rodríguez-Gutiérrez G, Rios JJ, Fernández-Bolaños J. Food Chem, 2016, 197, Part A: 554–561. Google Scholar

[58] Cvjetko Bubalo M, Ćurko N, Tomašević M, Kovačević Ganić K, Radojčić Redovniković I. Food Chem, 2016, 200: 159-166 CrossRef PubMed Google Scholar

[59] Zhao C, Ren J, Qu X. Langmuir, 2013, 29: 1183-1191 CrossRef PubMed Google Scholar

[60] Hu P, Zhang R, Meng X, Liu H, Xu C, Liu Z. Inorg Chem, 2016, 55: 2374-2380 CrossRef PubMed Google Scholar

[61] Hartley JM, Ip CM, Forrest GCH, Singh K, Gurman SJ, Ryder KS, Abbott AP, Frisch G. Inorg Chem, 2014, 53: 6280-6288 CrossRef PubMed Google Scholar

[62] Mjalli FS. Fluid Phase Equilibria, 2016, 409: 312-317 CrossRef Google Scholar

[63] Perkins SL, Painter P, Colina CM. J Chem Eng Data, 2014, 59: 3652-3662 CrossRef Google Scholar

[64] Sun H, Li Y, Wu X, Li G. J Mol Model, 2013, 19: 2433-2441 CrossRef PubMed Google Scholar

[65] Shahbaz K, Bagh FSG, Mjalli FS, AlNashef IM, Hashim MA. Fluid Phase Equilibria, 2013, 354: 304-311 CrossRef Google Scholar

[66] Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM. Fluid Phase Equilibria, 2012, 319: 48-54 CrossRef Google Scholar

[67] GharehBagha FS, Shahbazb K, Mjalli FS, AlNashef IM, Hashim MA. Fluid Phase Equilib, 2012, 356: 30–37. Google Scholar

[68] Rimsza JM, Corrales LR. Comp Theor Chem, 2012, 987: 57-61 CrossRef Google Scholar

[69] Mirza NR, Nicholas NJ, Wu Y, Kentish S, Stevens GW. J Chem Eng Data, 2015, 60: 1844-1854 CrossRef Google Scholar

[70] Bai L, Zhu J, Chen B. Fluid Phase Equilibria, 2011, 312: 7-13 CrossRef Google Scholar

[71] Bhatt VD, Gohil K. Thermochimica Acta, 2013, 556: 23-29 CrossRef Google Scholar

[72] Zhang Z, Salih AAM, Li M, Yang B. Energ Fuels, 2014, 28: 2802-2810 CrossRef Google Scholar

[73] 李果. 脂肪醇相变蓄能特性的数值模拟. 硕士学位论文. 大连: 大连理工大学, 2012. Google Scholar

[74] Sarier N, Onder E. Thermochimica Acta, 2012, 540: 7-60 CrossRef Google Scholar

  • 图 1

    离子液体、类离子液体、低共熔溶剂等概念交互关系图(网络版彩图)

  • 图 2

    典型的季铵盐、季盐阳离子结构(Bu为丁基, butyl; Et为乙基, ethyl)[17]

  • 图 3

    典型的氢键供体类中性配体分子结构[17]

  • 图 4

    类离子液体的4种合成路线

  • 图 5

    DNA在水和类离子液体中的折叠结构示意图[59] (网络版彩图)

  • 图 6

    氯化胆碱型类离子液体中氢键作用分子动力学模拟 图[63] (网络版彩图)

  • 表 1   可形成类离子液体的典型化合物

    类型

    典型化合物

    有机盐类

    季铵盐, 季盐, 硫盐. 主要包括: 氯化胆碱、溴化胆碱、氯化胆碱衍生物、甲基三苯基溴化

    等

    无机盐类

    金属氯化物. 主要包括: 氯化锌、氯化铝、氯化亚锡、氯化铁等

    醇类

    多元醇类. 主要包括: 乙二醇、甘油、乳糖、葡萄糖、己二醇等

    胺类

    酰胺, 硫代酰胺. 主要包括: 尿素、乙酰胺、二甲基尿素、硫脲、苯甲酰胺等

    羧酸类

    主要包括: 马来酸、苯甲酸、己二酸、草酸、丁二酸、柠檬酸、乳酸等

    水合盐类

    主要包括: 六水氯化镁、六水氯化铬、二水氯化铜、六水氯化钴、六水氯化镍、四水硝酸锂等

  • 表 2   典型离子液体中氢键及相互作用的谱图表

    离子液体a)

    谱图

    氢键b)

    HBDA (α) c)

    E d)

    m.p. (℃) e)

    Td (℃) f)

    [Dmim]Cl

    X-ray, IR, NMR, neutron

    C–H···Cl(Br, I)

    0.44 g)

    378.03

    84

    285

    [Dim][BF4]

    X-ray, IR

    C–H···F

    0.61

    356.47

    11

    412

    [Dim][PF6]

    X-ray, IR, neutron

    C–H···F

    0.64

    319.00

    10

    375

    [Dim][OSO2CF3]

    X-ray, IR, NMR

    C–H···O, C–H···F

    0.60

    345.60

    −9

    140

    [Dim][OCOCF3]

    X-ray, NMR

    C–H···O, C–H···F

    0.56

    375.72

    −14

    150

    [Dim] [Tf2N]

    X-ray, THz, IR, neutron

    C–H···N, C–H···F, C–H···O

    0.66

    313.60

    −15

    455

    [Pyr][Tf2N]

    X-ray, Raman

    0.48

    26

    [(C4H9)(CH3)3N][Tf2N]

    0.47

    19

    [Dmim] +为1-癸基-3-甲基咪唑阳离子, [Dim]+为1,3-二甲基咪唑阳离子, [Pyr]+为吡啶阳离子, [Tf2N]为双三氟甲磺酰亚胺阴离子; b) 晶体相和液相中阴阳离子间可能存在的氢键; c) 给出氢键的能力(仅对[Bmim]+离子而言); d) 基于密度泛函理论(density functional theory, DFT)和二级微扰理论(second-order moller-plesset prturbation theory, MP2)方法计算获得的平均键能(仅对[Emim]+离子而言); e) 熔点; f) 分解温度(对[Emim]+离子而言); g) 过冷状态下测定

  • 表 3   氢键供体-胆碱类类离子液体熔点

    R1

    R2

    R3

    R4

    X

    化合物

    Tf (℃)

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    尿素

    12

    CH3

    CH3

    CH3

    C2H4OH

    NO3

    尿素

    4

    CH3

    CH3

    CH3

    C2H4OH

    F

    尿素

    1

    CH3

    CH3

    CH3

    PhCH2

    Cl

    尿素

    26

    CH3

    CH3

    CH3

    C2H4Cl

    Cl

    尿素

    15

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    甲基脲

    29

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    烯丙基脲

    9

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    香草醛

    17

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    2,3-二甲苯酚

    17

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    D-果糖

    5

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    香荚兰醛

    17

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    D-葡萄糖

    15

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    丙烯酰胺

    32

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    甲基丙

    烯酸

    15

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    戊酸

    22

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    苯乙醇酸

    33

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    谷氨酸

    13

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    丙二酸

    10

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    草酸

    34

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    苯乙酸

    25

    CH3

    CH3

    CH3

    C2H4OH

    Cl

    苯基丙酸

    20

  • 表 4   类离子液体典型组分的熔点和相变焓

    化合物

    熔点(℃)

    相变焓(J g−1)

    乙酸

    15.9

    164

    二水草酸

    101

    398

    丙二酸

    135

    224

    丁二酸

    188

    311

    己二酸

    152

    256

    尿素

    134

    218

    乙酰胺

    82

    233

    丙酰胺

    82

    175

    丁酰胺

    117

    212

    癸酰胺

    101

    222

    丙二酰胺

    162

    229

    己二酰胺

    226

    365

    1,6-己二醇

    44

    194

    正癸醇[73]

    7

    210

    十二醇[73]

    24

    216

    肌醇

    225

    259

    季戊四醇

    191

    281

    内消旋-赤藓醇

    110

    273

    双季戊四醇

    220

    263

    2-氨基-2-甲基-1,3-丙二醇[74]

    78

    234

    未标注引用文献化合物数据均为本课题组自测

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号