logo

SCIENTIA SINICA Chimica, Volume 47, Issue 1: 40-61(2017) https://doi.org/10.1360/N032016-00161

Self-propelling mini-motor and its applications in supramolecular self-assembly and energy conversion

More info
  • ReceivedAug 4, 2016
  • AcceptedSep 2, 2016

Abstract

Abstract: With the booming development of smart materials, self-propelling motors have drawn much attention in the research on biomedical science, cargo transportation, environmental remediation and mini-robot, etc. In this review, based on the classification of the type of driving force, we summarized the recent progress of rapid locomotion of mini-devices (from centimeter to millimeter scale) propelled by physical and chemical driving force. Based on the concept of supramolecular chemistry, we summed up the applied research of self-propelling mini-motor on the supramolecular self-assembly. Based on the Faraday’s law of electromagnetic induction, we summarized the applications of self-propelling mini-motor in the energy conversion process from chemical energy to mechanical form, and then to electricity.


Funded by

国家自然科学基金面上项目(21674009)

国家自然科学基金委优秀青年科学基金(51422302资助项目)


References

[1] Paxton WF, Sundararajan S, Mallouk TE, Sen A. Angew Chem Int Ed, 2006, 45: 5420-5429 CrossRef PubMed Google Scholar

[2] Sánchez S, Soler L, Katuri J. Angew Chem Int Ed, 2015, 54: 1414-1444 CrossRef PubMed Google Scholar

[3] Maria-Hormigos R, Jurado-Sánchez B, Escarpa A. Lab Chip, 2016, 16: 2397-2407 CrossRef PubMed Google Scholar

[4] Ismagilov RF, Schwartz A, Bowden N, Whitesides GM. Angew Chem Int Ed, 2002, 41: 652-654 CrossRef Google Scholar

[5] Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A. Nanoscale, 2013, 5: 1273-1283 CrossRef PubMed ADS Google Scholar

[6] Wang J, Gao W. ACS Nano, 2012, 6: 5745-5751 CrossRef PubMed Google Scholar

[7] Guix M, Mayorga-Martinez CC, Merkoçi A. Chem Rev, 2014, 114: 6285-6322 CrossRef PubMed Google Scholar

[8] Wang J. Lab Chip, 2012, 12: 1944-1950 CrossRef PubMed Google Scholar

[9] Soler L, Sánchez S. Nanoscale, 2014, 6: 7175-7182 CrossRef PubMed ADS Google Scholar

[10] Campuzano S, Kagan D, Orozco J, Wang J. Analyst, 2011, 136: 4621-4630 CrossRef PubMed Google Scholar

[11] Gao W, Sattayasamitsathit S, Orozco J, Wang J. J Am Chem Soc, 2011, 133: 11862-11864 CrossRef PubMed Google Scholar

[12] Gao W, Sattayasamitsathit S, Manesh KM, Weihs D, Wang J. J Am Chem Soc, 2010, 132: 14403-14405 CrossRef PubMed Google Scholar

[13] Magdanz V, Sanchez S, Schmidt OG. Adv Mater, 2013, 25: 6581-6588 CrossRef PubMed Google Scholar

[14] Sanchez S, Solovev AA, Mei Y, Schmidt OG. J Am Chem Soc, 2010, 132: 13144-13145 CrossRef PubMed Google Scholar

[15] Solovev AA, Xi W, Gracias DH, Harazim SM, Deneke C, Sanchez S, Schmidt OG. ACS Nano, 2012, 6: 1751-1756 CrossRef PubMed Google Scholar

[16] Baraban L, Harazim SM, Sanchez S, Schmidt OG. Angew Chem Int Ed, 2013, 52: 5552-5556 CrossRef PubMed Google Scholar

[17] Liu R, Sen A. J Am Chem Soc, 2011, 133: 20064-20067 CrossRef PubMed Google Scholar

[18] Moo JGS, Wang H, Pumera M. Chem Commun, 2014, 50: 15849-15851 CrossRef PubMed Google Scholar

[19] Wang H, Zhao G, Pumera M. J Am Chem Soc, 2014, 136: 2719-2722 CrossRef PubMed Google Scholar

[20] Shao J, Xuan M, Dai L, Si T, Li J, He Q. Angew Chem Int Ed, 2015, 54: 12782-12787 CrossRef PubMed Google Scholar

[21] Xuan M, Shao J, Lin X, Dai L, He Q. Colloids Surfaces A-Physicochemical Eng Aspects, 2015, 482: 92-97 CrossRef Google Scholar

[22] Wu Z, Wu Y, He W, Lin X, Sun J, He Q. Angew Chem Int Ed, 2013, 52: 7000-7003 CrossRef PubMed Google Scholar

[23] Wang W, Duan W, Ahmed S, Sen A, Mallouk TE. Acc Chem Res, 2015, 48: 1938-1946 CrossRef PubMed Google Scholar

[24] Wang W, Castro LA, Hoyos M, Mallouk TE. ACS Nano, 2012, 6: 6122-6132 CrossRef PubMed Google Scholar

[25] Solovev AA, Mei Y, Bermúdez Ureña E, Huang G, Schmidt OG. Small, 2009, 5: 1688-1692 CrossRef PubMed Google Scholar

[26] Li J, Huang G, Ye M, Li M, Liu R, Mei Y. Nanoscale, 2011, 3: 5083-5089 CrossRef PubMed ADS Google Scholar

[27] Mou F, Pan D, Chen C, Gao Y, Xu L, Guan J. Adv Funct Mater, 2015, 25: 6173-6181 CrossRef Google Scholar

[28] Mou F, Chen C, Ma H, Yin Y, Wu Q, Guan J. Angew Chem Int Ed, 2013, 52: 7208-7212 CrossRef PubMed Google Scholar

[29] Su M, Liu M, Liu L, Sun Y, Li M, Wang D, Zhang H, Dong B. Langmuir, 2015, 31: 11914-11920 CrossRef PubMed Google Scholar

[30] Liu L, Liu M, Dong Y, Zhou W, Zhang L, Su Y, Zhang H, Dong B. J Mater Sci, 2016, 51: 1496-1503 CrossRef ADS Google Scholar

[31] Zhang Q, Dong R, Chang X, Ren B, Tong Z. ACS Appl Mater Interfaces, 2015, 7: 24585-24591 CrossRef Google Scholar

[32] Dong R, Zhang Q, Gao W, Pei A, Ren B. ACS Nano, 2016, 10: 839-844 CrossRef Google Scholar

[33] Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregón A, Nelson BJ. Adv Mater, 2012, 24: 811-816 CrossRef PubMed Google Scholar

[34] Zhang L, Petit T, Lu Y, Kratochvil BE, Peyer KE, Pei R, Lou J, Nelson BJ. ACS Nano, 2010, 4: 6228-6234 CrossRef PubMed Google Scholar

[35] Chang ST, Paunov VN, Petsev DN, Velev OD. Nat Mater, 2007, 6: 235-240 CrossRef PubMed ADS Google Scholar

[36] Osada Y, Okuzaki H, Hori H. Nature, 1992, 355: 242-244 CrossRef ADS Google Scholar

[37] Loget G, Kuhn A. Nat Commun, 2011, 2: 535 CrossRef PubMed ADS Google Scholar

[38] Roche J, Carrara S, Sanchez J, Lannelongue J, Loget G, Bouffier L, Fischer P, Kuhn A. Sci Rep, 2014, 4: 67605. Google Scholar

[39] Loget G, Kuhn A. Lab Chip, 2012, 12: 1967-1971 CrossRef PubMed Google Scholar

[40] Kimura T, Umehara Y, Kimura F. Soft Matter, 2012, 8: 6206-6209 CrossRef Google Scholar

[41] Shi F, Liu S, Gao H, Ding N, Dong L, Tremel W, Knoll W. Adv Mater, 2009, 21: 1927-1930 CrossRef Google Scholar

[42] Leong TG, Randall CL, Benson BR, Bassik N, Stern GM, Gracias DH. Proc Natl Acad Sci USA, 2009, 106: 703-708 CrossRef PubMed ADS Google Scholar

[43] Cheng M, Ju G, Jiang C, Zhang Y, Shi F. J Mater Chem A, 2013, 1: 13411-13416 CrossRef Google Scholar

[44] Diguet A, Guillermic RM, Magome N, Saint-Jalmes A, Chen Y, Yoshikawa K, Baigl D. Angew Chem Int Ed, 2009, 48: 9281-9284 CrossRef PubMed Google Scholar

[45] Kobayashi M, Abe J. J Am Chem Soc, 2012, 134: 20593-20596 CrossRef PubMed Google Scholar

[46] Ahmed D, Lu M, Nourhani A, Lammert PE, Stratton Z, Muddana HS, Crespi VH, Huang TJ. Sci Rep, 2015, 5: 9744 CrossRef PubMed ADS Google Scholar

[47] Kaynak M, Ozcelik A, Nama N, Nourhani A, Lammert PE, Crespi VH, Huang TJ. Lab Chip, 2016, 16: 3532-3537 CrossRef PubMed Google Scholar

[48] Okawa D, Pastine SJ, Zettl A, Fréchet JMJ. J Am Chem Soc, 2009, 131: 5396-5398 CrossRef PubMed Google Scholar

[49] Wang L, Liu Y, Cheng Y, Cui X, Lian H, Liang Y, Chen F, Wang H, Guo W, Li H, Zhu M, Ihara H. Adv Sci, 2015, 2: 1500084 CrossRef PubMed Google Scholar

[50] Park HS, Sitti M. Compliant footpad design analysis for a bio-inspired quadruped amphibious robot. In: The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, 2009. 645–651. Google Scholar

[51] Zhu W, Li J, Leong YJ, Rozen I, Qu X, Dong R, Wu Z, Gao W, Chung PH, Wang J, Chen S. Adv Mater, 2015, 27: 4411-4417 CrossRef PubMed Google Scholar

[52] Kumar R, Kiristi M, Soto F, Li J, Singh VV, Wang J. RSC Adv, 2015, 5: 78986-78993 CrossRef Google Scholar

[53] Xiao M, Guo X, Cheng M, Ju G, Zhang Y, Shi F. Small, 2014, 10: 859-865 CrossRef PubMed Google Scholar

[54] Yu L, Cheng M, Song M, Zhang D, Xiao M, Shi F. Adv Funct Mater, 2015, 25: 5786-5793 CrossRef Google Scholar

[55] Dey KK, Bhandari S, Bandyopadhyay D, Basu S, Chattopadhyay A. Small, 2013, 9: 1916-1920 CrossRef PubMed Google Scholar

[56] Singh AK, Dey KK, Chattopadhyay A, Mandal TK, Bandyopadhyay D. Nanoscale, 2014, 6: 1398-1405 CrossRef PubMed ADS Google Scholar

[57] Singh AK, Mandal TK, Bandyopadhyay D. RSC Adv, 2015, 5: 64444-64449 CrossRef Google Scholar

[58] Gao Y, Cheng M, Wang B, Feng Z, Shi F. Adv Mater, 2010, 22: 5125-5128 CrossRef PubMed Google Scholar

[59] Ju G, Cheng M, Xiao M, Xu J, Pan K, Wang X, Zhang Y, Shi F. Adv Mater, 2013, 25: 2915-2919 CrossRef PubMed Google Scholar

[60] Osada Y, Gong JP, Uchida M, Isogai N. Jpn J Appl Phys, 1995, 34: L511-L512 CrossRef ADS Google Scholar

[61] Gong JP, Matsumoto S, Uchida M, Isogai N, Osada Y. J Phys Chem, 1996, 100: 11092-11097 CrossRef Google Scholar

[62] Scriven LE, Sternling CV. Nature, 1960, 187: 186-188 CrossRef ADS Google Scholar

[63] Lauga E, Davis AMJ. J Fluid Mech, 2012, 705: 120-133 CrossRef ADS arXiv Google Scholar

[64] Bassik N, Abebe BT, Gracias DH. Langmuir, 2008, 24: 12158-12163 CrossRef PubMed Google Scholar

[65] Wang H, Sofer Z, Moo JGS, Pumera M. Chem Commun, 2015, 51: 9899-9902 CrossRef PubMed Google Scholar

[66] Jin H, Marmur A, Ikkala O, Ras RHA. Chem Sci, 2012, 3: 2526-2529 CrossRef Google Scholar

[67] Zhang H, Duan W, Liu L, Sen A. J Am Chem Soc, 2013, 135: 15734-15737 CrossRef PubMed Google Scholar

[68] Renney C, Brewer A, Mooibroek TJ. J Chem Educ, 2013, 90: 1353-1357 CrossRef Google Scholar

[69] Pimienta V, Antoine C. Curr Opin Colloid Interface Sci, 2014, 19: 290-299 CrossRef Google Scholar

[70] Sharma R, Chang ST, Velev OD. Langmuir, 2012, 28: 10128-10135 CrossRef PubMed Google Scholar

[71] Nakata S, Iguchi Y, Ose S, Kuboyama M, Ishii T, Yoshikawa K. Langmuir, 1997, 13: 4454-4458 CrossRef Google Scholar

[72] Nakata S, Kirisaka J, Arima Y, Ishii T. J Phys Chem B, 2006, 110: 21131–21134. Google Scholar

[73] Suematsu NJ, Ikura Y, Nagayama M, Kitahata H, Kawagishi N, Murakami M, Nakata S. J Phys Chem C, 2010, 114: 9876-9882 CrossRef Google Scholar

[74] Suematsu NJ, Miyahara Y, Matsuda Y, Nakata S. J Phys Chem C, 2010, 114: 13340-13343 CrossRef Google Scholar

[75] Nakata S, Matsuo K. Langmuir, 2005, 21: 982-984 CrossRef PubMed Google Scholar

[76] Ikezoe Y, Washino G, Uemura T, Kitagawa S, Matsui H. Nat Mater, 2012, 11: 1081–1085. Google Scholar

[77] Ikezoe Y, Fang J, Wasik TL, Shi M, Uemura T, Kitagawa S, Matsui H. Nano Lett, 2015, 15: 4019-4023 CrossRef PubMed ADS Google Scholar

[78] Xiao M, Cheng M, Zhang Y, Shi F. Small, 2013, 9: 2509-2514 CrossRef PubMed Google Scholar

[79] Xiao M, Jiang C, Shi F. NPG Asia Mater, 2014, 6: e128 CrossRef Google Scholar

[80] Dong Y, Liu M, Zhang H, Dong B. Nanoscale, 2016, 8: 8378-8383 CrossRef PubMed ADS Google Scholar

[81] Norikane Y, Tanaka S, Uchida E. CrystEngComm, 2016, 18: 7225-7228 CrossRef Google Scholar

[82] Soh S, Branicki M, Grzybowski BA. J Phys Chem Lett, 2011, 2: 770-774 CrossRef Google Scholar

[83] Zhao G, Seah TH, Pumera M. Chem Eur J, 2011, 17: 12020-12026 CrossRef PubMed Google Scholar

[84] Zhang X, Pint CL, Lee MH, Schubert BE, Jamshidi A, Takei K, Ko H, Gillies A, Bardhan R, Urban JJ, Wu M, Fearing R, Javey A. Nano Lett, 2011, 11: 3239-3244 CrossRef PubMed ADS Google Scholar

[85] Ma M, Guo L, Anderson DG, Langer R. Science, 2013, 339: 186-189 CrossRef PubMed ADS Google Scholar

[86] Cheng M, Gao H, Zhang Y, Tremel W, Chen JF, Shi F, Knoll W. Langmuir, 2011, 27: 6559-6564 CrossRef PubMed Google Scholar

[87] Cheng M, Liu Q, Xian Y, Shi F. ACS Appl Mater Interfaces, 2014, 6: 7572-7578 CrossRef PubMed Google Scholar

[88] Cheng M, Wang Y, Yu L, Su H, Han W, Lin Z, Li J, Hao H, Tong C, Li X, Shi F. Adv Funct Mater, 2015, 25: 6851-6857 CrossRef Google Scholar

[89] Cheng M, Ju G, Zhang Y, Song M, Zhang Y, Shi F. Small, 2014, 10: 3907-3911 CrossRef PubMed Google Scholar

[90] Xiao M, Xian Y, Shi F. Angew Chem Int Ed, 2015, 54: 8952-8956 CrossRef PubMed Google Scholar

[91] Mitsumata T, Ikeda K, Gong JP, Osada Y. Appl Phys Lett, 1998, 73: 2366-2368 CrossRef ADS Google Scholar

[92] Mitsumata T, Ikeda K, Gong JP, Osada Y. Langmuir, 2000, 16: 307-312 CrossRef Google Scholar

[93] Ikezoe Y, Fang J, Wasik TL, Uemura T, Zheng Y, Kitagawa S, Matsui H. Adv Mater, 2015, 27: 288-291 CrossRef PubMed Google Scholar

[94] Xiao M, Wang L, Ji F, Shi F. ACS Appl Mater Interfaces, 2016, 8: 11403-11411 CrossRef Google Scholar

[95] Song M, Cheng M, Ju G, Zhang Y, Shi F. Adv Mater, 2014, 26: 7059-7063 CrossRef PubMed Google Scholar

[96] Song M, Xiao M, Zhang L, Zhang D, Liu Y, Wang F, Shi F. Nano Energ, 2016, 20: 233-243 CrossRef Google Scholar

[97] Zhang L, Song M, Xiao M, Shi F. Adv Funct Mater, 2016, 26: 851-856 CrossRef Google Scholar

[98] Sailapu SK, Chattopadhyay A. Angew Chem Int Ed, 2014, 53: 1521-1524 CrossRef PubMed Google Scholar

[99] Behkam B, Sitti M. Appl Phys Lett, 2007, 90: 023902 CrossRef ADS Google Scholar

[100] Carlsen RW, Sitti M. Small, 2014, 10: 3831-3851 CrossRef PubMed Google Scholar

[101] Park SJ, Bae H, Kim J, Lim B, Park J, Park S. Lab Chip, 2010, 10: 1706-1711 CrossRef PubMed Google Scholar

[102] Wang W, Chiang TY, Velegol D, Mallouk TE. J Am Chem Soc, 2013, 135: 10557-10565 CrossRef PubMed Google Scholar

[103] Paxton WF, Baker PT, Kline TR, Wang Y, Mallouk TE, Sen A. J Am Chem Soc, 2006, 128: 14881-14888 CrossRef PubMed Google Scholar

[104] Ebbens SJ, Howse JR. Langmuir, 2011, 27: 12293-12296 CrossRef PubMed Google Scholar

[105] Pavlick RA, Sengupta S, McFadden T, Zhang H, Sen A. Angew Chem, 2011, 123: 9546-9549 CrossRef Google Scholar

[106] Mano N, Heller A. J Am Chem Soc, 2005, 127: 11574-11575 CrossRef PubMed Google Scholar

[107] Su M, Dravid VP. Nano Lett, 2005, 5: 2023-2028 CrossRef PubMed ADS Google Scholar

  • 图 1

    电场驱动物体运动. (a) 交流电驱动固态物体在水面上的运动[35]; (b) 直流电驱动凝胶在溶液中运动[36] (网络版彩图)

  • 图 2

    直流电驱动物体运动. (a) 导体在溶液中的水平运动[37]; (b) 垂直运动伴随LED灯选择性发光[28]; (c) 垂直方向上浮下潜运动[39] (网络版彩图)

  • 图 3

    磁场驱动物体运动. (a) 硅橡胶-不锈钢丝复合物在循环磁场下的水平运动[40]; (b) 修饰有Fe3O4纳米粒子的玻璃毛细管在磁场下的水平运动[41] (网络版彩图)

  • 图 4

    磁场驱动物体运动. (a) 磁场-温度双响应微抓器用于生物分离[42]; (b)磁操控用于封闭体系中的油水分离[43] (网络版彩图)

  • 图 5

    光场驱动物体运动. (a) 紫外光驱动偶氮苯油滴在水面上的运动[44]; (b)红外光驱动抗磁性物质在永磁铁上的运动[45] (网络版彩图)

  • 图 6

    超声场驱动物体运动. (a) 超声场频率与气泡直径发生共振驱动物体运动[46]; (b) 超声场引起的流体流动推动器件运 动[47] (网络版彩图)

  • 图 7

    热驱动物体运动. (a) 热梯度驱动厘米级PDMS块体在水面上的运动[48]; (b) 红外光改变密度驱动复合物的运动[49] (网络版彩图)

  • 图 8

    机械力驱动物体运动仿生“耶稣蜥蜴”[50] (网络版彩图)

  • 图 9

    金属铂催化双氧水产生氧气泡体系驱动物体运动. (a) 厘米级三维人造鱼的运动及其磁响应性[51]; (b) 厘米级三维人造鱼用于环境治理[52] (网络版彩图)

  • 图 10

    气泡驱动物体进行水平运动. (a) pH响应性水平运动[53]; (b) 氢气泡-氧气泡驱动的水平往复运动[54] (网络版彩图)

  • 图 11

    催化剂-双氧水产生氧气泡体系驱动物体运动. (a) pH响应性水平运动[55]; (b) pH-磁场双响应性水平运动[56]; (c) 磁场响应性纸器件的水平运动[57] (网络版彩图)

  • 图 12

    气泡驱动物体进行垂直运动. (a) pH响应性上浮下潜运动[58]; (b) 温度响应性上浮下潜运动[59] (网络版彩图)

  • 图 13

    基于Marangoni效应驱使的运动的调节方式. (a, b) 运动实体形状的调节[69,70]; (c) 表面活性剂浓度的调节[72]; (d) 运动实体中驱动系统位置的调节[73]; (e) 溶液中还原剂的调节[74] (网络版彩图)

  • 图 14

    基于Marangoni效应驱使的运动的智能停止与开启. (a) 环境中低表面能物质的引入[75]; (b) MOF-DPA体系的运动[76]; (c) DPA溶解度增加引起物体停止运动[77]; (d) pH响应性智能开启运动[78] (网络版彩图)

  • 图 15

    基于Marangoni效应驱使的运动的智能运动. (a) 紫外光响应性厘米级智能运动[79]; (b) 紫外光响应性微米级智能运 动[80]; (c) 偶氮苯晶体的紫外光响应性智能运动[81] (网络版彩图)

  • 图 16

    Marangoni效应驱使的运动中的协同效应. (a) 自组装过程[82]; (b) 水面汲油[83] (网络版彩图)

  • 图 17

    聚合物形变驱使的物体运动. (a) 温敏型聚合物响应环境温度驱使的运动[84]; (b) 聚合物响应环境湿度驱使的运动[85] (网络版彩图)

  • 图 18

    运动在微米级超分子组装中的应用. (a) 基于金属-有机物配位作用的超分子组装[86]; (b) 基于环糊精-偶氮苯分子识别作用的超分子组装[87]; (c) 三维有序支架的构筑及在生物组织工程支架中的应用[88] (网络版彩图)

  • 图 19

    运动在毫米级超分子组装中的应用. (a) 金属铂催化双氧水体系用于宏观超分子组装[89]; (b) 化学Marangoni效应与环糊精-偶氮苯分子识别作用相结合实现稳定有序组装体的构筑[90] (网络版彩图)

  • 图 20

    Marangoni效应驱使的运动在能量转换方面的应用. (a) 含低表面能小分子的凝胶驱动宏观物体运动体系[91,92]; (b) MOF-DPA驱动系统驱动宏观物体运动体系[93] (网络版彩图)

  • 图 21

    气泡驱使的运动在能量转换方面的应用. (a) 金属铂催化双氧水产生氧气泡驱动水平运动在能量转换方面的应用[94]; (b) 镁条-盐酸产生氢气泡驱动上浮下潜运动在能量转换方面的应用[95] (网络版彩图)

  • 图 22

    气泡驱使的运动在能量转换方面的应用. (a) 金属铂催化双氧水产生氧气泡驱动垂直运动在能量转换方面的应用[96]; (b) 方解石-盐酸产生二氧化碳气泡驱动上浮下潜运动在能量转换方面的应用[97]; (c) 金属铂催化双氧水产生氧气泡驱动毫米级垂直运动在能量转换方面的应用[98] (网络版彩图)

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号