logo

SCIENTIA SINICA Chimica, Volume 47, Issue 7: 816-829(2017) https://doi.org/10.1360/N032016-00195

Macroscopic supramolecular assembly: new concept for the fabrication of supramolecular materials

More info
  • ReceivedNov 8, 2016
  • AcceptedJan 4, 2017
  • PublishedMar 7, 2017

Abstract

Recently macroscopic supramolecular assembly has been developed as a new research branch of supramolecular chemistry. It is defined as the process to assemble the building blocks with a feature size of micrometer or beyond micrometer through intermolecular interactions, leading to ordered structures. This research has been an important part for the realization of the “Self-assembly at All Scales” concept and provided new ideas and solutions to the fabrication of supramolecular bulk materials. This review will cover the general development, designing principle and strategies and application possibilities of macroscopic supramolecular assembly. We have clarified both the difference and correlation between macroscopic assembly based on long-range forces and macroscopic supramolecular assembly through intermolecular interactions, and interpreted the principle and mechanism to realize macroscopic supramolecular assembly. Finally, for the goal of promoting wide applications of supramolecular materials, we summarized methods to improve the ordering degree of the assembled structures with the concept of “precise assembly” and the promising possible uses in the fields of tissue engineering scaffold etc.


Funded by

国家自然科学基金(21374006,21604002资助项目)


References

[1] Steed JW, Atwood JL. Supramolecular Chemistry, 2nd Ed. New York: John Wiley & Sons, 2009. Google Scholar

[2] Voegtle F. 超分子化学. 张希, 林志宏, 高倩, 译. 长春: 吉林大学出版社, 1995. Google Scholar

[3] 张希. 高分子学报, 2007, 1: 905–912. Google Scholar

[4] Service RF. Science, 2005, 309: 95 CrossRef PubMed Google Scholar

[5] Yang L, Tan X, Wang Z, Zhang X. Chem Rev, 2015, 115: 7196-7239 CrossRef PubMed Google Scholar

[6] Yan D, Zhou Y, Hou J. Science, 2004, 303: 65-67 CrossRef PubMed ADS Google Scholar

[7] Tee BCK, Wang C, Allen R, Bao Z. Nat Nanotechnol, 2012, 7: 825-832 CrossRef PubMed ADS Google Scholar

[8] Liu Y, Wang T, Huan Y, Li Z, He G, Liu M. Adv Mater, 2013, 25: 5875-5879 CrossRef PubMed Google Scholar

[9] Stoddart JF. Nat Chem, 2009, 1: 14-15 CrossRef PubMed ADS Google Scholar

[10] Cai YS, Guo ZQ, Chen JM, Li WL, Zhong LB, Gao Y, Jiang L, Chi LF, He T, Zhu WH. J Am Chem Soc, 2016, 138: 2219-2224 CrossRef Google Scholar

[11] Paleos CM, Pantos A. Acc Chem Res, 2014, 47: 1475-1482 CrossRef PubMed Google Scholar

[12] Langton MJ, Beer PD. Acc Chem Res, 2014, 47: 1935-1949 CrossRef PubMed Google Scholar

[13] Mattia E, Otto S. Nat Nanotechnol, 2015, 10: 111-119 CrossRef PubMed ADS Google Scholar

[14] Zhao Y, Sakai F, Su L, Liu Y, Wei K, Chen G, Jiang M. Adv Mater, 2013, 25: 5215-5256 CrossRef PubMed Google Scholar

[15] He Z, Jiang W, Schalley CA. Chem Soc Rev, 2015, 44: 779-789 CrossRef PubMed Google Scholar

[16] Wang C, Wang Z, Zhang X. Acc Chem Res, 2012, 45: 608-618 CrossRef PubMed Google Scholar

[17] Bowden N. Science, 1997, 276: 233-235 CrossRef Google Scholar

[18] Bowden NB, Weck M, Choi IS, Whitesides GM. Acc Chem Res, 2001, 34: 231-238 CrossRef Google Scholar

[19] Schulte B, Tsotsalas M, Becker M, Studer A, De Cola L. Angew Chem Int Ed, 2010, 49: 6881-6884 CrossRef PubMed Google Scholar

[20] Cheng M, Shi F, Li J, Lin Z, Jiang C, Xiao M, Zhang L, Yang W, Nishi T. Adv Mater, 2014, 26: 3009-3013 CrossRef PubMed Google Scholar

[21] Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H. Nat Chem, 2011, 3: 34-37 CrossRef PubMed ADS Google Scholar

[22] Mulder A, Auletta T, Sartori A, Del Ciotto S, Casnati A, Ungaro R, Huskens J, Reinhoudt DN. J Am Chem Soc, 2004, 126: 6627-6636 CrossRef PubMed Google Scholar

[23] Huskens J, Mulder A, Auletta T, Nijhuis CA, Ludden MJW, Reinhoudt DN. J Am Chem Soc, 2004, 126: 6784-6797 CrossRef PubMed Google Scholar

[24] Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp EW, Haag R. Angew Chem Int Ed, 2012, 51: 10472-10498 CrossRef PubMed Google Scholar

[25] Whitesides GM, Grzybowski B. Science, 2002, 295: 2418-2421 CrossRef PubMed ADS Google Scholar

[26] Whitesides GM, Boncheva M. Proc Natl Acad Sci USA, 2002, 99: 4769-4774 CrossRef PubMed ADS Google Scholar

[27] Goodsell DS. Bionanotechnology: Lessons from Nature. New York: Wiley, 2004. Google Scholar

[28] Gracias DH, Tien J, Breen TL, Hsu C, Whitesides GM. Science, 2000, 289: 1170-1172 CrossRef ADS Google Scholar

[29] Lewandowski EP, Bernate JA, Tseng A, Searson PC, Stebe KJ. Soft Matt, 2009, 5: 886-890 CrossRef ADS Google Scholar

[30] Zhang Z, Pfleiderer P, Schofield AB, Clasen C, Vermant J. J Am Chem Soc, 2011, 133: 392-395 CrossRef PubMed Google Scholar

[31] Wang JY, Wang Y, Sheiko SS, Betts DE, DeSimone JM. J Am Chem Soc, 2012, 134: 5801-5806 CrossRef PubMed Google Scholar

[32] Liu M, Zhang JG, Lv Y, Xia PH. Chin Phys Lett, 2006, 23: 42-44 CrossRef ADS Google Scholar

[33] Zrínyi M. Colloid Polym Sci, 2000, 278: 98-103 CrossRef Google Scholar

[34] Xu F, Wu CAM, Rengarajan V, Finley TD, Keles HO, Sung Y, Li B, Gurkan UA, Demirci U. Adv Mater, 2011, 23: 4254-4260 CrossRef PubMed Google Scholar

[35] Love JC, Urbach AR, Prentiss MG, Whitesides GM. J Am Chem Soc, 2003, 125: 12696-12697 CrossRef PubMed Google Scholar

[36] Tasoglu S, Kavaz D, Gurkan UA, Guven S, Chen P, Zheng R, Demirci U. Adv Mater, 2013, 25: 1137-1143 CrossRef PubMed Google Scholar

[37] Herlihy KP, Nunes J, DeSimone JM. Langmuir, 2008, 24: 8421-8426 CrossRef PubMed Google Scholar

[38] Grzybowski BA, Winkleman A, Wiles JA, Brumer Y, Whitesides GM. Nat Mater, 2003, 2: 241-245 CrossRef PubMed ADS Google Scholar

[39] Helm CA, Israelachvili JN, McGuiggan PM. Science, 1989, 246: 919-922 CrossRef ADS Google Scholar

[40] Marra J, Israelachvili J. Biochemistry, 1985, 24: 4608-4618 CrossRef Google Scholar

[41] Cademartiri L, Bishop KJM. Nat Mater, 2014, 14: 2-9 CrossRef PubMed ADS Google Scholar

[42] Wang Y, Wang Y, Breed DR, Manoharan VN, Feng L, Hollingsworth AD, Weck M, Pine DJ. Nature, 2012, 491: 51-55 CrossRef PubMed ADS Google Scholar

[43] Hashidzume A, Zheng Y, Takashima Y, Yamaguchi H, Harada A. Macromolecules, 2013, 46: 1939-1947 CrossRef ADS Google Scholar

[44] Yamaguchi H, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Macromolecules, 2011, 44: 2395-2399 CrossRef ADS Google Scholar

[45] Zheng Y, Hashidzume A, Takashima Y, Yamaguchi H, Harada A. Langmuir, 2011, 27: 13790-13795 CrossRef PubMed Google Scholar

[46] Kobayashi Y, Takashima Y, Hashidzume A, Yamaguchi H, Harada A. Sci Rep, 2013, 3: 1243 CrossRef ADS Google Scholar

[47] Nakahata M, Takashima Y, Harada A. Angew Chem Int Ed, 2014, 53: 3617-3621 CrossRef PubMed Google Scholar

[48] Nakahata M, Takashima Y, Hashidzume A, Harada A. Chem Eur J, 2015, 21: 2770-2774 CrossRef PubMed Google Scholar

[49] Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Nat Commun, 2012, 3: 603 CrossRef PubMed ADS Google Scholar

[50] Zheng Y, Hashidzume A, Harada A. Macromol Rapid Commun, 2013, 34: 1062-1066 CrossRef PubMed Google Scholar

[51] Zheng Y, Hashidzume A, Takashima Y, Yamaguchi H, Harada A. ACS Macro Lett, 2012, 1: 1083-1085 CrossRef Google Scholar

[52] Zheng Y, Hashidzume A, Takashima Y, Yamaguchi H, Harada A. Nat Commun, 2012, 3: 831 CrossRef PubMed ADS Google Scholar

[53] Nakahata M, Mori S, Takashima Y, Hashidzume A, Yamaguchi H, Harada A. ACS Macro Lett, 2014, 3: 337-340 CrossRef Google Scholar

[54] Qi H, Ghodousi M, Du Y, Grun C, Bae H, Yin P, Khademhosseini A. Nat Commun, 2013, 4: 2275 CrossRef PubMed ADS Google Scholar

[55] Ma C, Li T, Zhao Q, Yang X, Wu J, Luo Y, Xie T. Adv Mater, 2014, 26: 5665-5669 CrossRef PubMed Google Scholar

[56] 陆海旭, 唐黎明. 高分子学报, 2013, 10: 1241–1246. Google Scholar

[57] Yuan W, Lu Z, Li CM. J Mater Chem, 2012, 22: 9351-9357 CrossRef Google Scholar

[58] Shen L, Fu J, Fu K, Picart C, Ji J. Langmuir, 2010, 26: 16634-16637 CrossRef PubMed Google Scholar

[59] Yoo PJ, Zacharia NS, Doh J, Nam KT, Belcher AM, Hammond PT. ACS Nano, 2008, 2: 561-571 CrossRef PubMed Google Scholar

[60] Wang X, Liu F, Zheng X, Sun J. Angew Chem Int Ed, 2011, 50: 11378-11381 CrossRef PubMed Google Scholar

[61] Garza JM, Schaaf P, Muller S, Ball V, Stoltz JF, Voegel JC, Lavalle P. Langmuir, 2004, 20: 7298-7302 CrossRef PubMed Google Scholar

[62] Cheng M, Gao H, Zhang Y, Tremel W, Chen JF, Shi F, Knoll W. Langmuir, 2011, 27: 6559-6564 CrossRef PubMed Google Scholar

[63] Ahn Y, Jang Y, Selvapalam N, Yun G, Kim K. Angew Chem Int Ed, 2013, 52: 3140-3144 CrossRef PubMed Google Scholar

[64] Wang R, Xie T. Langmuir, 2010, 26: 2999-3002 CrossRef PubMed Google Scholar

[65] Wang R, Xie T. Chem Commun, 2010, 46: 1341-1343 CrossRef PubMed Google Scholar

[66] Cheng M, Ju G, Zhang Y, Song M, Zhang Y, Shi F. Small, 2014, 10: 3907-3911 CrossRef PubMed Google Scholar

[67] Xiao M, Xian Y, Shi F. Angew Chem Int Ed, 2015, 54: 8952-8956 CrossRef PubMed Google Scholar

[68] Akram R, Cheng M, Guo F, Iqbal S, Shi F. Langmuir, 2016, 32: 3617-3622 CrossRef PubMed Google Scholar

[69] Murphy SV, Atala A. Nat Biotechnol, 2014, 32: 773-785 CrossRef PubMed Google Scholar

[70] Souza GR, Molina JR, Raphael RM, Ozawa MG, Stark DJ, Levin CS, Bronk LF, Ananta JS, Mandelin J, Georgescu MM, Bankson JA, Gelovani JG, Killian TC, Arap W, Pasqualini R. Nat Nanotechnol, 2010, 5: 291-296 CrossRef PubMed ADS Google Scholar

[71] Wylie RG, Ahsan S, Aizawa Y, Maxwell KL, Morshead CM, Shoichet MS. Nat Mater, 2011, 10: 799-806 CrossRef PubMed ADS Google Scholar

[72] Persch E, Dumele O, Diederich F. Angew Chem Int Ed, 2015, 54: 3290-3327 CrossRef PubMed Google Scholar

[73] Jurin FE, Buron CC, Martin N, Filiâtre C. J Colloid Interface Sci, 2014, 431: 64-70 CrossRef PubMed Google Scholar

[74] Shin S, Lim S, Kim Y, Kim T, Choi TL, Lee M. J Am Chem Soc, 2013, 135: 2156-2159 CrossRef PubMed Google Scholar

[75] Anderson CA, Jones AR, Briggs EM, Novitsky EJ, Kuykendall DW, Sottos NR, Zimmerman SC. J Am Chem Soc, 2013, 135: 7288-7295 CrossRef PubMed Google Scholar

[76] Livnah O, Bayer EA, Wilchek M, Sussman JL. Proc Natl Acad Sci USA, 1993, 90: 5076-5080 CrossRef Google Scholar

[77] Li C, Faulkner-Jones A, Dun AR, Jin J, Chen P, Xing Y, Yang Z, Li Z, Shu W, Liu D, Duncan RR. Angew Chem Int Ed, 2015, 54: 3957-3961 CrossRef PubMed Google Scholar

[78] Han YL, Yang Y, Liu S, Wu J, Chen Y, Lu TJ, Xu F. Biofabrication, 2013, 5: 035004 CrossRef PubMed ADS Google Scholar

[79] Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T, Lu TJ, Xu F. Adv Funct Mater, 2013, 23: 660-672 CrossRef Google Scholar

[80] Xu F, Finley TD, Turkaydin M, Sung Y, Gurkan UA, Yavuz AS, Guldiken RO, Demirci U. Biomaterials, 2011, 32: 7847-7855 CrossRef PubMed Google Scholar

[81] Cheng M, Liu Q, Xian Y, Shi F. ACS Appl Mater Interfaces, 2014, 6: 7572-7578 CrossRef PubMed Google Scholar

[82] Cheng M, Wang Y, Yu L, Su H, Han W, Lin Z, Li J, Hao H, Tong C, Li X, Shi F. Adv Funct Mater, 2015, 25: 6851-6857 CrossRef Google Scholar

[83] Lee J, Silberstein MN, Abdeen AA, Kim SY, Kilian KA. Mater Horiz, 2016, 3: 447-451 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号