logo

SCIENTIA SINICA Chimica, Volume 48 , Issue 3 : 266-276(2018) https://doi.org/10.1360/N032017-00138

Advances in molecularly imprinted supramolecular technology for monitoring and controlling trace environmental pollutants

More info
  • ReceivedAug 16, 2017
  • AcceptedSep 26, 2017
  • PublishedNov 22, 2017

Abstract

Trace environmental pollutants cause serious threatens to human health. As a kind of highly efficient and stable molecular recognition system, molecularly imprinted supramolecules possess broad prospect in monitoring and controlling trace environmental pollutants. This paper briefly retrospects the development of molecularly imprinting technology, summarizes its application in monitoring trace environmental pollutants, and demonstrates a variety of processes and strategies for the treatment of trace environmental pollutants, such as coupling molecularly imprinting with bio-catalysis or photocatalysis. Finally, the basic science and key technical problems faced by the research and applications of molecularly imprinting in monitoring and controlling trace environmental pollutants are discussed.


Funded by

国家自然科学基金(21525625))

国家重点基础研究发展计划(2014CB745100))

国家高技术研究发展计划(2013AA020302))

中国博士后科学基金(2017M610038))

中央高校基本科研业务费(ZY1712,XK1701)资助项目)


References

[1] Chen L, Xu S, Li J. Chem Soc Rev, 2011, 40: 2922-2942 CrossRef PubMed Google Scholar

[2] Ki CD, Oh C, Oh SG, Chang JY. J Am Chem Soc, 2002, 124: 14838-14839 CrossRef Google Scholar

[3] 谭天伟. 分子印迹技术及应用. 北京: 化学工业出版社, 2010. Google Scholar

[4] Polyakov MV. Russ J Phys Chem, 1931, 2: 799–805. Google Scholar

[5] Wuff G, Sarhan A. Angew Chem Int Ed, 1972, 11: 341–345. Google Scholar

[6] Vlatakis G, Andersson LI, Müller R, Mosbach K. Nature, 1993, 361: 645-647 CrossRef PubMed ADS Google Scholar

[7] Horikawa R, Sunayama H, Kitayama Y, Takano E, Takeuchi T. Angew Chem Int Ed, 2016, 55: 13023-13027 CrossRef PubMed Google Scholar

[8] Sibrian-Vazquez M, Spivak DA. J Am Chem Soc, 2004, 126: 7827-7833 CrossRef PubMed Google Scholar

[9] Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O'Mahony J, Whitcombe MJ. J Mol Recognit, 2006, 19: 106-180 CrossRef PubMed Google Scholar

[10] Wulff G. Angew Chem Int Ed, 1995, 34: 1812-1832 CrossRef Google Scholar

[11] Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN. J Am Chem Soc, 1995, 117: 7105-7111 CrossRef Google Scholar

[12] Zhang Z, Zhang X, Liu B, Liu J. J Am Chem Soc, 2017, 139: 5412-5419 CrossRef PubMed Google Scholar

[13] Takeuchi T, Kitayama Y, Sasao R, Yamada T, Toh K, Matsumoto Y, Kataoka K. Angew Chem Int Ed, 2017, 56: 7088-7092 CrossRef PubMed Google Scholar

[14] Pichon V, Chapuis-Hugon F. Anal Chim Acta, 2008, 622: 48-61 CrossRef PubMed Google Scholar

[15] Chen L, Wang X, Lu W, Wu X, Li J. Chem Soc Rev, 2016, 45: 2137-2211 CrossRef PubMed Google Scholar

[16] 郭秀春, 周文辉. 化学研究, 2012, 23: 103–110. Google Scholar

[17] Manzo V, Ulisse K, Rodríguez I, Pereira E, Richter P. Anal Chim Acta, 2015, 889: 130-137 CrossRef PubMed Google Scholar

[18] He X, Mei X, Wang J, Lian Z, Tan L, Wu W. Mar Pollut Bull, 2016, 102: 142-147 CrossRef PubMed Google Scholar

[19] Rodríguez-Reino MP, Rodríguez-Fernández R, Peña-Vázquez E, Domínguez-González R, Bermejo-Barrera P, Moreda-Piñeiro A. J Chromatogr A, 2015, 1391: 9-17 CrossRef PubMed Google Scholar

[20] Sun H, Li Y, Yang J, Sun X, Huang C, Zhang X, Chen J. J Sep Sci, 2016, 39: 2188-2195 CrossRef PubMed Google Scholar

[21] Lu W, Wang X, Wu X, Liu D, Li J, Chen L, Zhang X. J Chromatogr A, 2017, 1483: 30-39 CrossRef PubMed Google Scholar

[22] Madikizela LM, Chimuka L. J Pharm BioMed Anal, 2016, 128: 210-215 CrossRef PubMed Google Scholar

[23] Yu D, Hu X, Wei S, Wang Q, He C, Liu S. J Chromatogr A, 2015, 1396: 17-24 CrossRef PubMed Google Scholar

[24] Hashemi-Moghaddam H, Ahmadifard M. Talanta, 2016, 150: 148-154 CrossRef PubMed Google Scholar

[25] Tan L, Li W, Li H, Tang Y. J Chromatogr A, 2014, 1336: 59-66 CrossRef PubMed Google Scholar

[26] Chen W, Xue M, Xue F, Mu X, Xu Z, Meng Z, Zhu G, Shea KJ. Talanta, 2015, 140: 68-72 CrossRef PubMed Google Scholar

[27] Lv Y, Tan T, Svec F. Biotech Adv, 2013, 31: 1172-1186 CrossRef PubMed Google Scholar

[28] He XP, Lian ZR, Tan LJ, Wang JT. J Chromatogr A, 2016, 1469: 8-16 CrossRef PubMed Google Scholar

[29] Lu H, Xu S. Talanta, 2015, 144: 303-311 CrossRef PubMed Google Scholar

[30] Shi S, Guo J, You Q, Chen X, Zhang Y. Chem Eng J, 2014, 243: 485-493 CrossRef Google Scholar

[31] Dirion B, Cobb Z, Schillinger E, Andersson LI, Sellergren B. J Am Chem Soc, 2003, 125: 15101-15109 CrossRef PubMed Google Scholar

[32] Hao Y, Gao R, Shi L, Liu D, Tang Y, Guo Z. J Chromatogr A, 2015, 1396: 7-16 CrossRef PubMed Google Scholar

[33] Xu S, Lu H, Chen L. J Chromatogr A, 2014, 1350: 23-29 CrossRef PubMed Google Scholar

[34] Wu X, Wang X, Lu W, Wang X, Li J, You H, Xiong H, Chen L. J Chromatogr A, 2016, 1435: 30-38 CrossRef PubMed Google Scholar

[35] Chen K, He R, Luo X, Qin P, Tan L, Tang Y, Yang Z. Biosens Bioelectron, 2017, 94: 609-615 CrossRef PubMed Google Scholar

[36] Liu Y, Zhong G, Liu Z, Meng M, Liu F, Ni L. Chem Eng J, 2016, 296: 437-446 CrossRef Google Scholar

[37] Xu S, Lu H, Zheng X, Chen L. J Mater Chem C, 2013, 1: 4406-4422 CrossRef Google Scholar

[38] Chen W, Ma Y, Pan J, Meng Z, Pan G, Sellergren B. Polymers, 2015, 7: 1689-1715 CrossRef Google Scholar

[39] Appell M, Jackson MA, Wang LC, Ho CH, Mueller A. J Sep Sci, 2014, 37: 281-286 CrossRef PubMed Google Scholar

[40] Masqué N, Marcé RM, Borrull F, Cormack PAG, Sherrington DC. Anal Chem, 2000, 72: 4122-4126 CrossRef Google Scholar

[41] Moein MM, Javanbakht M, Karimi M, Akbari-Adergani B. Talanta, 2015, 134: 340-347 CrossRef PubMed Google Scholar

[42] Muhammad T, Yimit O, Turahun Y, Muhammad K, Uludağ Y, Zhao Z. J Sep Sci, 2014, 37: 1873-1879 CrossRef PubMed Google Scholar

[43] Luo J, Cong J, Liu J, Gao Y, Liu X. Anal Chim Acta, 2015, 864: 74-84 CrossRef PubMed Google Scholar

[44] Bakas I, Hayat A, Piletsky S, Piletska E, Chehimi MM, Noguer T, Rouillon R. Talanta, 2014, 130: 294-298 CrossRef PubMed Google Scholar

[45] Graniczkowska K, Pütz M, Hauser FM, De Saeger S, Beloglazova NV. Biosens Bioelectron, 2016, 92: 741-747 CrossRef PubMed Google Scholar

[46] Zhang L, Li J, Zeng Y. Microchim Acta, 2015, 182: 249-255 CrossRef Google Scholar

[47] Ghanei-Motlagh M, Taher MA, Heydari A, Ghanei-Motlagh R, Gupta VK. Mater Sci Eng-C, 2016, 63: 367-375 CrossRef PubMed Google Scholar

[48] Yang X, Li X, Zhang L, Gong J. Biosens Bioelectron, 2017, 92: 61-67 CrossRef PubMed Google Scholar

[49] Sun G, Wang P, Ge S, Ge L, Yu J, Yan M. Biosens Bioelectron, 2014, 56: 97-103 CrossRef PubMed Google Scholar

[50] Wang X, Yu J, Kang Q, Shen D, Li J, Chen L. Biosens Bioelectron, 2016, 77: 624-630 CrossRef PubMed Google Scholar

[51] Li M, Liu H, Ren X. Biosens Bioelectron, 2017, 89: 899-905 CrossRef PubMed Google Scholar

[52] Xu S, Lu H. Biosens Bioelectron, 2016, 85: 950-956 CrossRef PubMed Google Scholar

[53] Tang Y, Gao Z, Wang S, Gao X, Gao J, Ma Y, Liu X, Li J. Biosens Bioelectron, 2015, 71: 44-50 CrossRef PubMed Google Scholar

[54] Lu H, Xu S. Biosens Bioelectron, 2017, 92: 147-153 CrossRef PubMed Google Scholar

[55] Yılmaz E, Özgür E, Bereli N, Türkmen D, Denizli A. Mater Sci Eng-C, 2017, 73: 603-610 CrossRef PubMed Google Scholar

[56] Hussain M, Kotova K, Lieberzeit PA. Sensors, 2016, 16: 1011 CrossRef PubMed Google Scholar

[57] Ayankojo AG, Tretjakov A, Reut J, Boroznjak R, Öpik A, Rappich J, Furchner A, Hinrichs K, Syritski V. Anal Chem, 2016, 88: 1476-1484 CrossRef PubMed Google Scholar

[58] Xu ZX, Gao HJ, Zhang LM, Chen XQ, Qiao XG. J Food Sci, 2011, 76: R69-R75 CrossRef PubMed Google Scholar

[59] Tang Y, Gao J, Liu X, Gao X, Ma T, Lu X, Li J. Food Chem, 2017, 228: 62-69 CrossRef PubMed Google Scholar

[60] Shi C, Liu X, Song L, Qiao X, Xu Z. Food Anal Methods, 2015, 8: 2496-2503 CrossRef Google Scholar

[61] Liu H, Ren L, Fang G, Li H, Wang S. Anal Methods, 2013, 5: 5677-5683 CrossRef Google Scholar

[62] Chianella I, Guerreiro A, Moczko E, Caygill JS, Piletska EV, De Vargas Sansalvador IMP, Whitcombe MJ, Piletsky SA. Anal Chem, 2013, 85: 8462-8468 CrossRef PubMed Google Scholar

[63] Li L, Peng AH, Lin ZZ, Zhong HP, Chen XM, Huang ZY. Food Chem, 2017, 229: 403-408 CrossRef PubMed Google Scholar

[64] Rafatullah M, Sulaiman O, Hashim R, Ahmad A. J Hazard Mater, 2010, 177: 70-80 CrossRef PubMed Google Scholar

[65] Foo KY, Hameed BH. Adv Colloid Interface Sci, 2011, 162: 22-28 CrossRef PubMed Google Scholar

[66] Huang DL, Wang RZ, Liu YG, Zeng GM, Lai C, Xu P, Lu BA, Xu JJ, Wang C, Huang C. Environ Sci Pollut Res, 2015, 22: 963-977 CrossRef PubMed Google Scholar

[67] Wang N, Xiao SJ, Su CW. Colloid Polym Sci, 2016, 294: 1305-1314 CrossRef Google Scholar

[68] Deng H, Wei Z, Wang XN. Carbohydr Polym, 2017, 157: 1190-1197 CrossRef PubMed Google Scholar

[69] de Escobar CC, Fisch A, dos Santos JHZ. Ind Eng Chem Res, 2015, 54: 254-262 CrossRef Google Scholar

[70] Krupadam RJ, Khan MS, Wate SR. Water Res, 2010, 44: 681-688 CrossRef PubMed Google Scholar

[71] Valtchev M, Palm BS, Schiller M, Steinfeld U. J Hazard Mater, 2009, 170: 722-728 CrossRef PubMed Google Scholar

[72] Ou H, Chen Q, Chen G, Wang L, Xu Y, Ma J, Wang L. Water Environ Res, 2017, 89: 348-356 CrossRef PubMed Google Scholar

[73] Pérez-Quintanilla D, Sánchez A, Sierra I. J Colloid Interface Sci, 2016, 472: 126-134 CrossRef PubMed ADS Google Scholar

[74] Huang K, Chen Y, Zhou F, Zhao X, Liu J, Mei S, Zhou Y, Jing T. J Hazard Mater, 2017, 333: 137-143 CrossRef PubMed Google Scholar

[75] Li Y, Zhang J, Xu C, Zhou Y. Sci China Chem, 2016, 59: 95-105 CrossRef Google Scholar

[76] Wang J, Li Z. J Hazard Mater, 2015, 300: 18-28 CrossRef PubMed Google Scholar

[77] Guo N, Su SJ, Liao B, Ding SL, Sun WY. Carbohydr Polym, 2017, 165: 376-383 CrossRef PubMed Google Scholar

[78] Bayramoglu G, Arica MY. J Hazard Mater, 2011, 187: 213-221 CrossRef PubMed Google Scholar

[79] Madikizela LM, Mdluli PS, Chimuka L. React Funct Polym, 2016, 103: 33-43 CrossRef Google Scholar

[80] Fu J, Wang X, Li J, Ding Y, Chen L. RSC Adv, 2016, 6: 44087-44095 CrossRef Google Scholar

[81] Zhu H, Pan J, Cao J, Ma Y, Qiu F, Zhang W, Yan Y. J Ind Eng Chem, 2017, 49: 198-207 CrossRef Google Scholar

[82] Su H. Biotech Lett, 2003, 25: 949-953 CrossRef Google Scholar

[83] Su H, Wang Z, Tan T. J Chem Technol Biotechnol, 2005, 80: 439-444 CrossRef Google Scholar

[84] Su H, Chen S, Tan T. Process Biochem, 2007, 42: 612-619 CrossRef Google Scholar

[85] Su H, Li J, Tan T. Biochem Eng J, 2008, 39: 503-509 CrossRef Google Scholar

[86] Jiang W, Su H, Huo H, Tan T. Appl Biochem Biotechnol, 2010, 160: 467-476 CrossRef PubMed Google Scholar

[87] Zhang X, Su H, Tan T, Xiao G. J Hazard Mater, 2011, 193: 1-9 CrossRef PubMed Google Scholar

[88] Xiao G, Zhang X, Su H, Tan T. Bioresource Tech, 2013, 143: 490-498 CrossRef PubMed Google Scholar

[89] Mishra S, Verma N. Chem Eng J, 2017, 313: 1142-1151 CrossRef Google Scholar

[90] Dai J, He J, Xie A, Gao L, Pan J, Chen X, Zhou Z, Wei X, Yan Y. Chem Eng J, 2016, 284: 812-822 CrossRef Google Scholar

[91] Shen X, Zhu L, Wang N, Ye L, Tang H. Chem Commun, 2012, 48: 788-798 CrossRef PubMed Google Scholar

[92] Liu F, Liu Q, Zhang Y, Liu Y, Wan Y, Gao K, Huang Y, Xia W, Wang H, Shi Y, Huang Z, Lu B. Chem Eng J, 2015, 262: 989-998 CrossRef Google Scholar

[93] Xie Y, Li H, Wang L, Liu Q, Shi Y, Zheng H, Zhang M, Wu Y, Lu B. Water Res, 2011, 45: 1189-1198 CrossRef PubMed Google Scholar

[94] Ansari SA, Khan MM, Ansari MO, Cho MH. New J Chem, 2016, 40: 3000-3009 CrossRef Google Scholar

[95] Yue D, Qian X, Zhao Y. Sci Bull, 2015, 60: 1791-1806 CrossRef Google Scholar

[96] Shen X, Zhu L, Yu H, Tang H, Liu S, Li W. New J Chem, 2009, 33: 1673-1679 CrossRef Google Scholar

[97] Xu S, Lu H, Chen L, Wang X. RSC Adv, 2014, 4: 45266-45274 CrossRef Google Scholar

[98] Xiao G, Su H, Tan T. J Hazard Mater, 2015, 283: 888-896 CrossRef PubMed Google Scholar

[99] Xiao G, Zhang X, Zhang W, Zhang S, Su H, Tan T. Appl Catal B-Environ, 2015, 170-171: 255-262 CrossRef Google Scholar

[100] Lai C, Wang MM, Zeng GM, Liu YG, Huang DL, Zhang C, Wang RZ, Xu P, Cheng M, Huang C, Wu HP, Qin L. Appl Surf Sci, 2016, 390: 368-376 CrossRef ADS Google Scholar

[101] de Escobar CC, Lansarin MA, Zimnoch Dos Santos JH. J Hazard Mater, 2016, 306: 359-366 CrossRef PubMed Google Scholar

  • 图 1

    分子印迹技术原理及过程示意图[9] (网络版彩图)

  • 图 2

    多模板印迹聚合物制备原理示意图[21] (网络版彩图)

  • 图 3

    表面分子印迹中空球制备原理示意图[26] (网络版彩图)

  • 图 4

    分子印迹固相微萃取-HPLC在线系统示意图[41] (网络版彩图)

  • 图 5

    绿麦隆分子印迹电化学传感器原理示意图[46] (网络版彩图)

  • 图 6

    藻蓝蛋白分子印迹荧光传感器原理示意图[50] (网络版彩图)

  • 图 7

    表面分子印迹核壳型生物吸附剂原理示意图[84]. 1-菌丝体基核, 2-壳聚糖壳层, 3-金属离子, 4-金属离子识别位点; a-包覆, b-印迹, c-模板洗脱, d-选择性吸附

  • 图 8

    水杨酸分子印迹TiO2薄膜原理示意图[96] (网络版彩图)

  • 图 9

    分子印迹壳聚糖-TiO2核壳型复合光催化介质原理示意图[98] (网络版彩图)

  • 表 1   分子印迹传感器监测低浓度环境污染物

    目标污染物

    传感器类别

    响应时间

    检测限

    线性范围

    重复使用次数

    参考文献

    对硝基苯酚

    电化学

    2 min

    5 nM

    0.01~100 μM, 200~1000 μM

    [43]

    杀扑磷

    20 min

    5.14 µg/L

    40~200 µg/L

    [44]

    N-甲基苯丙胺

    10 μM

    10~250 μM

    [45]

    绿麦隆

    0.927 nM

    5~100 nM

    [46]

    Hg(II)

    13 min

    0.02 μg/L

    0.07~80 μg/L

    [47]

    磷酸三苯酯

    光电化学

    15 min

    0.01~500 ng/mL

    [48]

    五氯酚

    4 pg/mL

    0.01~100 ng/mL

    [49]

    藻蓝蛋白

    光学

    6 min

    0.14 nM

    [50]

    2,4,6-三硝基苯酚

    3 min

    43 nM

    [51]

    2,4,6-三硝基甲苯

    17 nM

    10

    [52]

    瘦肉精

    5 min

    0.12 μg/L

    5.0~100.0 μg/L

    [53]

    双酚A

    10 min

    29 nM

    100 nM~2.5 μM

    [54]

    阿特拉津

    32.23 min

    0.7134 ng/mL

    0.5~15 ng/mL

    [55]

    甲醛

    石英微天平

    500 μL/m3

    [56]

    磺胺甲二唑

    表面声波

    1.7 nM

    3

    [57]

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号