logo

SCIENTIA SINICA Chimica, Volume 48 , Issue 3 : 256-265(2018) https://doi.org/10.1360/N032017-00146

Environmental behaviors and toxicity of heavy metals and metallic nanoparticles to marine organisms under ocean acidification

More info
  • ReceivedSep 1, 2017
  • AcceptedNov 17, 2017
  • PublishedJan 25, 2018

Abstract

Since industrial revolution, anthropogenic carbon dioxides releasing into the atmosphere are absorbed by the global oceans, which leads to measurable decrease of surface seawater pH and carbonate ion concentration ([CO32−]), thus causing the acidification of global ocean. Besides direct threatening the stability of marine ecosystems, ocean acidification (OA) could also change the environmental processes of marine pollutants, thus indirectly influencing their toxicity to marine organisms. By selecting heavy metals and metallic nanoparticles (MNPs) as the model marine pollutants, this review deeply summarizes the dominant mechanisms on species changes of heavy metals, and the dissolution, dispersion and transport of MNPs based on the causes of OA. The effects of OA-induced environmental process alteration on the toxicity of heavy metal and MNPs to marine organisms at different levels are explored. The differences among the observed toxicological data are analyzed. Finally, the key research challenges and future directions on the toxicity of OA and coexisting pollutants are provided.


Funded by

国家自然科学基金(编号:,41530642,41325013、41573092)

中国海洋大学“青年英才工程”启动经费(编号:,201412012)


References

[1] Waters JF, Millero FJ, Sabine CL. Glob Biogeochem Cycle, 2011, 25: GB4011 CrossRef ADS Google Scholar

[2] Haugan PM, Drange H. Energy Convers Manage, 1996, 37: 1019-1022 CrossRef Google Scholar

[3] Caldeira K, Wickett ME. J Geophys Res, 2005, 110: C09S04 CrossRef ADS Google Scholar

[4] Intergovernmental Panel on Climate Change. Climate Change 2014: Mitigation of Climate Change. Cambridge: Cambridge University Press, 2015. Google Scholar

[5] Caldeira K, Wickett ME. Nature, 2003, 425: 365 CrossRef PubMed ADS Google Scholar

[6] Burns WCG. Anthropogenic carbon dioxide emissions and ocean acidification: the potential impacts on ocean biodiversity. In: Askins RA, Dreyer GD, Visgilio GR, Whitelaw DM, Eds. Saving Biological Diversity. Berlin Heidelberg: Springer, 2008. 187–202. Google Scholar

[7] Melzner F, Thomsen J, Koeve W, Oschlies A, Gutowska MA, Bange HW, Hansen HP, Körtzinger A. Mar Biol, 2013, 160: 1875-1888 CrossRef Google Scholar

[8] Blackford J, Bull JM, Cevatoglu M, Connelly D, Hauton C, James RH, Lichtschlag A, Stahl H, Widdicombe S, Wright IC. Int J Greenhouse Gas Control, 2015, 38: 221-229 CrossRef Google Scholar

[9] Phelps JJC, Blackford JC, Holt JT, Polton JA. Int J Greenh Gas Con, 2015, 38: 210-220 CrossRef Google Scholar

[10] Wootton JT, Pfister CA, Forester JD. Proc Natl Acad Sci USA, 2008, 105: 18848-18853 CrossRef PubMed ADS Google Scholar

[11] Feely RA, Alin SR, Newton J, Sabine CL, Warner M, Devol A, Krembs C, Maloy C. Estuar Coast Shelf S, 2010, 88: 442-449 CrossRef ADS Google Scholar

[12] Cai WJ, Hu X, Huang WJ, Murrell MC, Lehrter JC, Lohrenz SE, Chou WC, Zhai W, Hollibaugh JT, Wang Y, Zhao P, Guo X, Gundersen K, Dai M, Gong GC. Nat Geosci, 2011, 4: 766-770 CrossRef ADS Google Scholar

[13] Körtzinger A. Chem Unserer Zeit, 2010, 44: 118-129 CrossRef Google Scholar

[14] Wan R, Chen Y, Zheng X, Su Y, Li M. Environ Sci Technol, 2016, 50: 9915-9922 CrossRef PubMed ADS Google Scholar

[15] Xu D, Wang D, Li B, Fan X, Zhang XW, Ye NH, Wang Y, Mou S, Zhuang Z. Environ Sci Technol, 2015, 49: 3548-3556 CrossRef PubMed ADS Google Scholar

[16] Moore SK, Trainer VL, Mantua NJ, Parker MS, Laws EA, Backer LC, Fleming LE. Environ Health, 2008, 7: S4 CrossRef PubMed Google Scholar

[17] Bach LT, Mackinder LCM, Schulz KG, Wheeler G, Schroeder DC, Brownlee C, Riebesell U. New Phytol, 2013, 199: 121-134 CrossRef PubMed Google Scholar

[18] Jin P, Wang TF, Liu NN, Dupont S, Beardall J, Boyd PW, Riebesell U, Gao KS. Nat Commun, 2015, 6: 8714. Google Scholar

[19] Stumpp M, Hu M, Casties I, Saborowski R, Bleich M, Melzner F, Dupont S. Nat Clim Change, 2013, 3: 1044-1049 CrossRef ADS Google Scholar

[20] Wei L, Wang Q, Wu H, Ji C, Zhao J. J Proteomics, 2015, 112: 83-94 CrossRef PubMed Google Scholar

[21] Parker LM, Ross PM, O’Connor WA. Mar Biol, 2011, 158: 689-697 CrossRef Google Scholar

[22] Bibby R, Cleall-Harding P, Rundle S, Widdicombe S, Spicer J. Biol Lett, 2007, 3: 699-701 CrossRef PubMed Google Scholar

[23] Watson SA, Lefevre S, McCormick MI, Domenici P, Nilsson GE, Munday PL. Proc R Soc B-Biol Sci, 2014, 281: 20132377 CrossRef PubMed Google Scholar

[24] Tseng YC, Hu MY, Stumpp M, Lin LY, Melzner F, Hwang PP. Comp Biochem Physiol Part A-Mol Integr Physiol, 2013, 165: 119-130 CrossRef PubMed Google Scholar

[25] Dixson DL, Munday PL, Jones GP. Ecol Lett, 2010, 13: 68-75 CrossRef PubMed Google Scholar

[26] Dixson DL, Jennings AR, Atema J, Munday PL. Glob Change Biol, 2015, 21: 1454-1462 CrossRef PubMed Google Scholar

[27] Diaz-Pulido G, Gouezo M, Tilbrook B, Dove S, Anthony KRN. Ecol Lett, 2011, 14: 156-162 CrossRef PubMed Google Scholar

[28] Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT. Nat Geosci, 2008, 1: 114-117 CrossRef ADS Google Scholar

[29] Clark RB, Frid C, Attrill M. Marine Pollution. Oxford: Clarendon Press, 1989. Google Scholar

[30] Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L. Environ Sci Pollut Res, 2016, 23: 8244-8259 CrossRef PubMed Google Scholar

[31] Shi D, Xu Y, Hopkinson BM, Morel FMM. Science, 2010, 327: 676-679 CrossRef PubMed ADS Google Scholar

[32] Millero F, Woosley R, DiTrolio B, Waters J. Oceanography, 2009, 22: 72-85 CrossRef Google Scholar

[33] Byrne RH, Kump LR, Cantrell KJ. Mar Chem, 1988, 25: 163-181 CrossRef Google Scholar

[34] Stockdale A, Tipping E, Lofts S, Mortimer RJG. Environ Sci Technol, 2016, 50: 1906-1913 CrossRef PubMed ADS Google Scholar

[35] Gledhill M, Achterberg EP, Li K, Mohamed KN, Rijkenberg MJA. Mar Chem, 2015, 177: 421-433 CrossRef Google Scholar

[36] Du LG, Rinklebe J, Vandecasteele B, Meers E, Tack FMG. Sci Total Environ, 2009, 407: 3972-3985 CrossRef PubMed Google Scholar

[37] Millero F, Pierrot D. Speciation of Metals in Natural Waters. Chemistry of Marine Water and Sediments. Berlin Heidelberg: Springer, 2002. 193–220. Google Scholar

[38] Frieder CA, Nam SH, Martz TR, Levin LA. Biogeosciences, 2012, 9: 3917-3930 CrossRef ADS Google Scholar

[39] Rose AL, Waite TD. Environ Sci Technol, 2005, 39: 2645-2650 CrossRef ADS Google Scholar

[40] Voelker BM, Sedlak DL, Zafiriou OC. Environ Sci Technol, 2000, 34: 1036-1042 CrossRef ADS Google Scholar

[41] de Orte MR, Sarmiento AM, Basallote MD, Rodríguez-Romero A, Riba I, Delvalls A. Sci Total Environ, 2014, 470-471: 356-363 CrossRef PubMed Google Scholar

[42] Kim JM, Baars O, Morel FMM. Phil Trans R Soc A, 2016, 374: 20150296 CrossRef PubMed ADS Google Scholar

[43] Bautista-Chamizo E, De Orte MR, DelValls TÁ, Riba I. Chemosphere, 2016, 144: 955-965 CrossRef PubMed Google Scholar

[44] Gao G, Liu Y, Li X, Feng Z, Xu Z, Wu H, Xu J. Environ Exp Bot, 2017, 135: 63-72 CrossRef Google Scholar

[45] Ivanina AV, Beniash E, Etzkorn M, Meyers TB, Ringwood AH, Sokolova IM. Aquat Toxicol, 2013, 140-141: 123-133 CrossRef PubMed Google Scholar

[46] Ivanina AV, Hawkins C, Sokolova IM. Fish Shellfish Immun, 2016, 49: 54-65 CrossRef PubMed Google Scholar

[47] Ivanina AV, Hawkins C, Beniash E, Sokolova IM. Comp Biochem Physiol Part C-Toxicol Pharmacol, 2015, 174-175: 1-12 CrossRef PubMed Google Scholar

[48] Ivanina AV, Sokolova IM. Aquat Toxicol, 2013, 144-145: 303-309 CrossRef PubMed Google Scholar

[49] Ivanina AV, Hawkins C, Sokolova IM. Fish Shellfish Immun, 2014, 37: 299-312 CrossRef PubMed Google Scholar

[50] Campbell AL, Mangan S, Ellis RP, Lewis C. Environ Sci Technol, 2014, 48: 9745-9753 CrossRef PubMed ADS Google Scholar

[51] Freitas R, de Marchi L, Moreira A, Pestana JLT, Wrona FJ, Figueira E, Soares AMVM. Sci Total Environ, 2017, 595: 691-701 CrossRef PubMed Google Scholar

[52] Li Y, Wang WX, Wang M. Sci Rep, 2017, 7: 324 CrossRef PubMed ADS Google Scholar

[53] Wang M, Lee JS, Li Y. Environ Sci Technol, 2017, 51: 5820-5831 CrossRef PubMed ADS Google Scholar

[54] Pascal PY, Fleeger JW, Galvez F, Carman KR. Mar Pollut Bull, 2010, 60: 2201-2208 CrossRef PubMed Google Scholar

[55] Yin Y, Hu Z, Du W, Ai F, Ji R, Gardea-Torresdey JL, Guo H. J Hazard Mater, 2017, 327: 64-70 CrossRef PubMed Google Scholar

[56] Kadar E, Simmance F, Martin O, Voulvoulis N, Widdicombe S, Mitov S, Lead JR, Readman JW. Environ Pollut, 2010, 158: 3490-3497 CrossRef PubMed Google Scholar

[57] Huang X, Lin D, Ning K, Sui Y, Hu M, Lu W, Wang Y. Aquat Toxicol, 2016, 180: 1-10 CrossRef PubMed Google Scholar

[58] Hu M, Lin D, Shang Y, Hu Y, Lu W, Huang X, Ning K, Chen Y, Wang Y. Sci Rep, 2017, 7: 40015 CrossRef PubMed ADS Google Scholar

[59] de Orte MR, Sarmiento AM, DelValls TÁ, Riba I. Mar Pollut Bull, 2014, 86: 59-67 CrossRef PubMed Google Scholar

[60] Qu RJ, Wang XH, Feng MB, Li Y, Liu HX, Wang LS, Wang ZY. Ecotoxicol Environ Saf, 2013, 95: 83-90 CrossRef PubMed Google Scholar

[61] Wilde KL, Stauber JL, Markich SJ, Franklin NM, Brown PL. Arch Environ Contam Toxicol, 2006, 51: 174-185 CrossRef PubMed Google Scholar

[62] Sokolova IM, Frederich M, Bagwe R, Lannig G, Sukhotin AA. Mar Environ Res, 2012, 79: 1-15 CrossRef PubMed Google Scholar

[63] https://www.bccresearch.com/market-research/nanotechnology/nanocomposites-market-nan021f.html. Accessed at: 2017-08-30. Google Scholar

[64] Holden PA, Gardea-Torresdey JL, Klaessig F, Turco RF, Mortimer M, Hund-Rinke K, Cohen Hubal EA, Avery D, Barceló D, Behra R, Cohen Y, Deydier-Stephan L, Ferguson PL, Fernandes TF, Herr Harthorn B, Henderson WM, Hoke RA, Hristozov D, Johnston JM, Kane AB, Kapustka L, Keller AA, Lenihan HS, Lovell W, Murphy CJ, Nisbet RM, Petersen EJ, Salinas ER, Scheringer M, Sharma M, Speed DE, Sultan Y, Westerhoff P, White JC, Wiesner MR, Wong EM, Xing B, Steele Horan M, Godwin HA, Nel AE. Environ Sci Technol, 2016, 50: 6124-6145 CrossRef PubMed ADS Google Scholar

[65] Matranga V, Corsi I. Mar Environ Res, 2012, 76: 32-40 CrossRef PubMed Google Scholar

[66] Canesi L, Corsi I. Sci Total Environ, 2016, 565: 933-940 CrossRef PubMed Google Scholar

[67] Baker TJ, Tyler CR, Galloway TS. Environ Pollut, 2014, 186: 257-271 CrossRef PubMed Google Scholar

[68] Fujiwara K, Sotiriou GA, Pratsinis SE. Langmuir, 2015, 31: 5284-5290 CrossRef PubMed Google Scholar

[69] Adeleye AS, Conway JR, Perez T, Rutten P, Keller AA. Environ Sci Technol, 2014, 48: 12561-12568 CrossRef PubMed ADS Google Scholar

[70] Moharami S, Jalali M. Environ Prog Sustain Energy, 2014, 33: 1209-1219 CrossRef Google Scholar

[71] Ghosh S, Mashayekhi H, Pan B, Bhowmik P, Xing B. Langmuir, 2008, 24: 12385-12391 CrossRef PubMed Google Scholar

[72] Paschoalino M, Guedes NC, Jardim W, Mielczarski E, Mielczarski JA, Bowen P, Kiwi J. J Photochem Photobiol A-Chem, 2008, 199: 105-111 CrossRef Google Scholar

[73] Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR. Environ Toxicol Chem, 2008, 27: 1825-1851 CrossRef Google Scholar

[74] Formo EV, Potterf CB, Yang M, Unocic RR, Leonard DN, Pawel M. Environ Sci Technol, 2016, 50: 7082-7089 CrossRef PubMed ADS Google Scholar

[75] Wang Z, Zhang L, Zhao J, Xing B. Environ Sci-Nano, 2016, 3: 240-255 CrossRef Google Scholar

[76] Zhao J, Cao X, Liu X, Wang Z, Zhang C, White JC, Xing B. Nanotoxicology, 2016, 10: 1297-1305 CrossRef PubMed Google Scholar

[77] Huang Y, Zhao L, Keller AA. Environ Sci Technol, 2017, 51: 9774-9783 CrossRef PubMed Google Scholar

[78] Apps JA, Zheng L, Zhang Y, Xu T, Birkholzer JT. Transp Porous Media, 2010, 82: 215-246 CrossRef Google Scholar

[79] Tortiglione C, Quarta A, Malvindi MA, Tino A, Pellegrino T. PLoS ONE, 2009, 4: e7698 CrossRef PubMed ADS Google Scholar

[80] Kroeker KJ, Kordas RL, Harley CDG. Biol Lett, 2017, 13: 20160802 CrossRef PubMed Google Scholar

[81] 王震宇, 赵建, 李娜, 李锋民, Xing BS. 环境科学, 2010, 31: 1409–1418. Google Scholar

[82] Della Torre C, Balbi T, Grassi G, Frenzilli G, Bernardeschi M, Smerilli A, Guidi P, Canesi L, Nigro M, Monaci F, Scarcelli V, Rocco L, Focardi S, Monopoli M, Corsi I. J Hazard Mater, 2015, 297: 92-100 CrossRef PubMed Google Scholar

  • 图 1

    重金属和MNPs在海洋酸化条件下可能的环境过程(网络版彩图)

  • 图 2

    海洋酸化调控重金属的生物毒性效应的主要机制(网络版彩图)

  • 图 3

    海洋酸化调控MNPs的生物毒性效应的主要机制(网络版彩图)

  • 表 1   海洋酸化对不同生物类群的影响及其作用机制

    生物种类

    生物名称

    研究结果及影响机制

    文献

    细菌

    脱氮副球菌(Paracoccus denitrificans)

    破坏细菌膜, 抑制与电子传递相关蛋白的表达, 抑制脱氮作用

    [14]

    藻类

    海带(Saccharina japonica)

    浮游孢子萌发率、雌配子的排卵数以及受精率均显著降低

    [15]

    拟菱形藻(Pseudo nitzschia)

    光合作用增强, 生长加剧

    [16]

    赫氏颗石藻(Emiliania huxleyi)

    光合作用会增强, 钙化过程相关基因下调, 钙化过程减弱, 颗石粒畸变

    [17]

    随CO2浓度升高, 藻释放的有毒酚类化合物会增加到1.5~3倍

    [18]

    无脊椎动物

    海胆(Paracoccus denitrificans)

    OA使得海胆幼体的消化系统受损, 胃蛋白酶的活性降低

    [19]

    牡蛎(Crassostrea gigas)

    OA会扰乱渗透平衡, 造成能量代谢紊乱

    [20]

    牡蛎(Saccostrea glomerata)

    卵子和精子胞内pH受到扰动, 精子活性降低, pH 7.8时受精过程的成功率降低到60%

    [21]

    玉黍螺(Littorina littorea)

    p(CO2)的升高使其对捕食者的化学分泌物敏感性增强, 可以更有效地识别捕食者

    [22]

    海螺(Gibberulus gibbosus)

    高浓度CO2 (~961 μatm)通过改变GABA受体相关的神经递质的功能破坏了海螺对捕食者的逃脱行为

    [23]

    鱼类

    青鱂(Oryzias latipes)

    胚胎发育延缓, 与主要代谢相关基因下调

    [24]

    小丑鱼(Amphiprion percula)

    OA影响耳石的形成, 规避能力受到抑制

    [25]

    大星鲨(Mustelus canis)

    在高p(CO2)暴露后对食物的气味追踪能力下降了4倍,攻击行为减弱

    [26]

  • 表 2   海洋酸化对重金属和MNPs的毒性效应的影响

    受试生物

    实验条件

    研究结果

    文献

    威氏海链藻(Thalassiosira weissflogii)

    pH 7.9, Zn(II)

    对Zn(II)的摄食速率升高了6%

    [42]

    海藻(Pleurochrysis roscoffensis)

    pH (5.5、6.0、6.5、7.0、8.0);Zn(II) (0、50、100、500、1000、1500 μg/L); 2周

    低浓度Zn(II)(<100 μg/L)在pH>6.5时生长促进, 但高浓度的Zn(II)会抑制藻的生长

    [43]

    石莼(Ulva prolifera)

    Cu(II) (0、0.5、2 μM); p(CO2) (400、1000、1400 μatm)

    Cu(II)(2 μM)对石莼的生长和光合作用的抑制效应在p(CO2) 1000 μatm得到缓解, 在p(CO2) 1400 μatm抑制增强; 高浓度Cu和p(CO2)会导致石莼畸变

    [44]

    蛤蜊(Mercenaria mercenaria)

    Cd(II) (25、100 μM); Cu(II) (1、5 μM); p(CO2) (0.05、1.52、3.01 kPa); 2 h

    OA使Cd(II)和Cu(II)的生物积累增加,并使其产生的ROS下降

    [45]

    牡蛎(Crassostrea virginica),

    蛤蜊(M.mercenaria)

    Cu(II) (50 μg/L); p(CO2) (395、800、2000 μatm); 4周

    Cu(II)在血细胞中的累积抑制血细胞新陈代谢; 而在OA条件下免疫功能升高, Cu(II)毒性得到缓解

    [46]

    Cd(II)、Cu(II)(50 μg/L); p(CO2) (395、800、2000 μatm); 10 d

    Cd(II)会破坏酸碱平衡导致胞内pH上升, OA下金属硫蛋白和铁蛋白表达上调, 血细胞的金属结合能力增强,毒性得到缓解

    [47]

    Cd(II)、Cu(II) (25 μM); pH 6.6~7.8

    低pH (<7.0)下Cd(II)、Cu(II)造成线粒体呼吸破坏得到缓解

    [48]

    Cd(II) (50 μg/L); p(CO2) (395、 800、2000 μatm); 4周

    OA加剧了Cd(II)对免疫相关功能造成的不利影响, 具有协同作用; 但在OA条件下Cd(II)对线粒体呼吸功能受损有缓解

    [49]

    多毛类环虫(Arenicola marina)

    pH (8.28、7.77、7.47); Cu(II) (0.2、2.0、20 μM)

    OA增强了Cu(II)对沙蚕精子的DNA损伤, 精子存活率下降, 存在协同作用, 但是未影响受精过程

    [50]

    多毛类环虫(Hediste diversicolor)

    pH (7.5); Hg(II) (5 µg/L); 28 d

    Hg(II)暴露下增强抗氧化防御机制, 消耗能量增加, OA及Hg(II)单独和共同暴露下出现氧化胁迫, 但未叠加

    [51]

    剑水蚤(Tigriopus japonicas),

    桡足类(Amphiascoides atopusSchizopera knabeni)

    p(CO2) (400、1000 μatm); Hg (0、1.0 µg/L); Cd(II) (0~3 mg/L); pH (6.08~8.20); 96 h

    Hg(II)抑制无节幼虫数量, OA条件下缩短发育时间, OA缓解Hg(II)对无节幼虫数量和繁殖力的抑制毒性

    [52,53]

    OA条件下Cd(II)对桡足类致死效应有所缓解, H+和重金属在胞外竞争使得两者存在拮抗作用

    [54]

    银鲫(Carassius auratus)

    CO2 (400±10、600±10 μL/L);ZnO MNPs (80 mg/L); 30 d

    OA条件下在肝脏、脑和肌肉的Zn含量分别增加了43.3%、86.4%、22.5%; ROS、脂质过氧化增多, 脑部和肝脏谷胱甘肽、半胱氨酸含量明显下降, 氧化损伤增加, OA加剧了ZnO MNPs毒性

    [55]

    贻贝(Mytilus galloprovincialis)

    pH (6.0、7.0、8.1);Fe2O3 MNPs (0~10000 μg/L);FeCl3 (0~800 μg/L); 48 h

    Fe2O3 MNPs (pH 6.0, 7.0)、FeCl3 (pH 6.0)缓解了OA造成的胚胎发育受损, 并且随着Fe2O3 MNPs浓度的升高正常发育的胚胎数目上升

    [56]

    贻贝(Mytilus coruscus)

    TiO2 MNPs (0、2.5、10 mg/L);pH (7.3、8.1); 14 d

    pH和TiO2MNPs都会使得贻贝免疫功能受损, 共同暴露存在一定的协同作用, 且免疫功能的损伤不可逆

    [57]

    低pH对贻贝的生理作用轻微, TiO2MNPs对贻贝生理功能影响显著; 两者共同暴露时存在协同效应, 贻贝的功能损伤更加严重

    [58]

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号