logo

SCIENTIA SINICA Chimica, Volume 48, Issue 2: 98-107(2018) https://doi.org/10.1360/N032017-00185

Recent Progress on the investigations of boron clusters and boron-based materials (I): borophene

More info
  • ReceivedNov 9, 2017
  • AcceptedNov 24, 2017
  • PublishedJan 10, 2018

Abstract

Boron, the fifth element in the period table, exhibits diverse bonding patterns and interesting structures due to its electron deficiency. Unlike its neighbor carbon, closed-packed boron sheet with graphene-like honeycomb lattice is unstable so that planar boron clusters usually have interior vacancies and corrugated appearance. Delocalized multi-center bonding has an important role to stabilize the 2D structures, giving rise to the concept of σ, π, …multiple aromaticity. The experimental observation of the B36 cluster in 2014 established the viability of boron monolayer which was named as “borophene” by Wang and Li. Recently, studies on planar CoB18 and RhB18 clusters have suggested the possibilities of metal-doped borophenes (metallo-borophenes) with potentially tunable electronic, magnetic and optical properties. In this review, we summarize recent experimental and theoretical advances in 2D pure-boron and metal-doped boron clusters, as well as their implications for borophenes and metalloborophenes as novel new boron materials.


Funded by

国家自然科学基金(编号:,21590792,21521091)

美国国家科学基金(编号:,CHE-1263745)


References

[1] http://news.youth.cn/kj/201412/t20141201_6140925.htm. Google Scholar

[2] Nielsen FH. Nutr Rev, 2008, 66: 183-191 CrossRef PubMed Google Scholar

[3] Scorei R. Orig Life Evol Biosph, 2012, 42: 3-17 CrossRef PubMed ADS Google Scholar

[4] Devirian TA, Volpe SL. Crit Rev Food Sci Nutr, 2003, 43: 219-231 CrossRef PubMed Google Scholar

[5] 刘然, 薛向欣, 姜涛, 张淑会, 段培宁, 杨合, 黄大威. 材料导报, 2006, 20: 1–4. Google Scholar

[6] Li WL, Chen X, Jian T, Chen TT, Li J, Wang LS. Nat Rev Chem, 2017, 1: 0071 CrossRef Google Scholar

[7] Wang LS. Int Rev Phys Chem, 2016, 35: 69-142 CrossRef Google Scholar

[8] Piazza ZA, Hu HS, Li WL, Zhao YF, Li J, Wang LS. Nat Commun, 2014, 5: 3113 CrossRef PubMed ADS Google Scholar

[9] Oganov AR, Chen J, Gatti C, Ma Y, Ma Y, Glass CW, Liu Z, Yu T, Kurakevych OO, Solozhenko VL. Nature, 2009, 457: 863-867 CrossRef PubMed ADS arXiv Google Scholar

[10] Hubert H, Devouard B, Garvie LAJ, O’Keeffe M, Buseck PR, Petuskey WT, McMillan PF. Nature, 1998, 391: 376-378 CrossRef ADS Google Scholar

[11] White MA, Cerqueira AB, Whitman CA, Johnson MB, Ogitsu T. Angew Chem Int Ed, 2015, 54: 3626-3629 CrossRef PubMed Google Scholar

[12] Mannix AJ, Zhou XF, Kiraly B, Wood JD, Alducin D, Myers BD, Liu X, Fisher BL, Santiago U, Guest JR, Yacaman MJ, Ponce A, Oganov AR, Hersam MC, Guisinger NP. Science, 2015, 350: 1513-1516 CrossRef PubMed ADS Google Scholar

[13] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K. Nat Chem, 2016, 8: 563-568 CrossRef PubMed ADS arXiv Google Scholar

[14] Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. Nature, 1985, 318: 162-163 CrossRef ADS Google Scholar

[15] Iijima S. Nature, 1991, 354: 56-58 CrossRef ADS Google Scholar

[16] Geim AK, Novoselov KS. Nat Mater, 2007, 6: 183-191 CrossRef PubMed ADS Google Scholar

[17] Tang A, Li Q, Liu C, Li J. Chem Phys Lett, 1993, 201: 465-469 CrossRef ADS Google Scholar

[18] Boustani I. Surf Sci, 1997, 370: 355-363 CrossRef ADS Google Scholar

[19] Zhai HJ, Kiran B, Li J, Wang LS. Nat Mater, 2003, 2: 827-833 CrossRef PubMed ADS Google Scholar

[20] Tang H, Ismail-Beigi S. Phys Rev Lett, 2007, 99: 115501 CrossRef PubMed ADS arXiv Google Scholar

[21] Yang X, Ding Y, Ni J. Phys Rev B, 2008, 77: 041402 CrossRef ADS Google Scholar

[22] Hanley L, Whitten JL, Anderson SL. J Phys Chem, 1988, 92: 5803-5812 CrossRef Google Scholar

[23] Ruatta SA, Hanley L, Anderson SL. J Chem Phys, 1989, 91: 226-239 CrossRef ADS Google Scholar

[24] Hintz PA, Ruatta SA, Anderson SL. J Chem Phys, 1990, 92: 292-303 CrossRef ADS Google Scholar

[25] Hintz PA, Sowa MB, Ruatta SA, Anderson SL. J Chem Phys, 1991, 94: 6446-6458 CrossRef ADS Google Scholar

[26] Zhai HJ, Wang LS, Alexandrova AN, Boldyrev AI. J Chem Phys, 2002, 117: 7917-7924 CrossRef ADS Google Scholar

[27] Bonacic-Koutecky V, Fantucci P, Koutecky J. Chem Rev, 1991, 91: 1035-1108 CrossRef Google Scholar

[28] Kato H, Yamashita K, Morokuma K. Chem Phys Lett, 1992, 190: 361-366 CrossRef ADS Google Scholar

[29] Boustani I. Chem Phys Lett, 1995, 240: 135-140 CrossRef ADS Google Scholar

[30] Boustani I. Phys Rev B, 1997, 55: 16426-16438 CrossRef ADS Google Scholar

[31] Fowler JE, Ugalde JM. J Phys Chem A, 2000, 104: 397-403 CrossRef ADS Google Scholar

[32] Sergeeva AP, Popov IA, Piazza ZA, Li WL, Romanescu C, Wang LS, Boldyrev AI. Acc Chem Res, 2014, 47: 1349-1358 CrossRef PubMed Google Scholar

[33] Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS. Coordin Chem Rev, 2006, 250: 2811-2866 CrossRef Google Scholar

[34] Jiang HR, Lu Z, Wu MC, Ciucci F, Zhao TS. Nano Energy, 2016, 23: 97-104 CrossRef Google Scholar

[35] Peng B, Zhang H, Shao H, Xu Y, Zhang R, Zhu H. J Mater Chem C, 2016, 4: 3592-3598 CrossRef Google Scholar

[36] Zhang X, Hu J, Cheng Y, Yang HY, Yao Y, Yang SA. Nanoscale, 2016, 8: 15340-15347 CrossRef PubMed Google Scholar

[37] Zhai HJ, Zhao YF, Li WL, Chen Q, Bai H, Hu HS, Piazza ZA, Tian WJ, Lu HG, Wu YB, Mu YW, Wei GF, Liu ZP, Li J, Li SD, Wang LS. Nat Chem, 2014, 447: 727-731 CrossRef PubMed ADS Google Scholar

[38] Bai H, Bai B, Zhang L, Huang W, Mu YW, Zhai HJ, Li SD. Sci Rep, 2016, 6: 35518 CrossRef PubMed ADS Google Scholar

[39] Chandiramouli R, Nagarajan V. Vacuum, 2017, 142: 13-20 CrossRef ADS Google Scholar

[40] Zubarev DY, Boldyrev AI. Phys Chem Chem Phys, 2008, 10: 5207-5217 CrossRef PubMed ADS Google Scholar

[41] Chen Q, Tian WJ, Feng LY, Lu HG, Mu YW, Zhai HJ, Li SD, Wang LS. Nanoscale, 2017, 9: 4550-4557 CrossRef PubMed Google Scholar

[42] Zhao Y, Chen X, Li J. Nano Res, 2017, 10: 3407-3420 CrossRef Google Scholar

[43] Chen X, Zhao YF, Wang LS, Li J. Comp Theor Chem, 2017, 1107: 57-65 CrossRef Google Scholar

[44] Zubarev DY, Boldyrev AI. J Comput Chem, 2007, 28: 251-268 CrossRef PubMed Google Scholar

[45] Boldyrev AI, Wang LS. Phys Chem Chem Phys, 2016, 18: 11589-11605 CrossRef PubMed ADS Google Scholar

[46] Sergeeva AP, Piazza ZA, Romanescu C, Li WL, Boldyrev AI, Wang LS. J Am Chem Soc, 2012, 134: 18065-18073 CrossRef PubMed Google Scholar

[47] Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS. J Phys Chem A, 2004, 108: 3509-3517 CrossRef ADS Google Scholar

[48] Romanescu C, Sergeeva AP, Li WL, Boldyrev AI, Wang LS. J Am Chem Soc, 2011, 133: 8646-8653 CrossRef PubMed Google Scholar

[49] 科技日报(Sci Tech Daily). No. 9827, page 1, Jan. 30, 2014. http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2014-01/30/content_245514.htm?div=-1. Google Scholar

[50] Li WL, Chen Q, Tian WJ, Bai H, Zhao YF, Hu HS, Li J, Zhai HJ, Li SD, Wang LS. J Am Chem Soc, 2014, 136: 12257-12260 CrossRef PubMed Google Scholar

[51] Penev ES, Bhowmick S, Sadrzadeh A, Yakobson BI. Nano Lett, 2012, 12: 2441-2445 CrossRef PubMed ADS Google Scholar

[52] Sun X, Liu X, Yin J, Yu J, Li Y, Hang Y, Zhou X, Yu M, Li J, Tai G, Guo W. Adv Funct Mater, 2017, 27: 1603300-1603321 CrossRef Google Scholar

[53] Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C. Chem Rev, 2013, 113: 7981-8065 CrossRef PubMed Google Scholar

[54] Liu Y, Penev ES, Yakobson BI. Angew Chem Int Ed, 2013, 52: 3156-3159 CrossRef PubMed Google Scholar

[55] Liu H, Gao J, Zhao J. Sci Rep, 2013, 3: 3238 CrossRef PubMed ADS Google Scholar

[56] Zhang Z, Yang Y, Gao G, Yakobson BI. Angew Chem Int Ed, 2015, 54: 13022-13026 CrossRef PubMed Google Scholar

[57] Xu S, Zhao Y, Liao J, Yang X, Xu H. Nano Res, 2016, 9: 2616-2622 CrossRef Google Scholar

[58] Zhai HJ, Alexandrova AN, Birch KA, Boldyrev AI, Wang LS. Angew Chem Int Ed, 2003, 42: 6004-6008 CrossRef PubMed Google Scholar

[59] Galeev TR, Romanescu C, Li WL, Wang LS, Boldyrev AI. J Chem Phys, 2011, 135: 104301-104301 CrossRef PubMed ADS Google Scholar

[60] Li WL, Romanescu C, Galeev TR, Wang LS, Boldyrev AI. J Phys Chem A, 2011, 115: 10391-10397 CrossRef PubMed ADS Google Scholar

[61] Romanescu C, Galeev TR, Li WL, Boldyrev AI, Wang LS. Angew Chem Int Ed, 2011, 50: 9334-9337 CrossRef PubMed Google Scholar

[62] Li WL, Romanescu C, Jian T, Wang LS. J Am Chem Soc, 2012, 134: 13228-13231 CrossRef PubMed Google Scholar

[63] Galeev TR, Romanescu C, Li WL, Wang LS, Boldyrev AI. Angew Chem Int Ed, 2012, 51: 2101-2105 CrossRef PubMed Google Scholar

[64] Romanescu C, Galeev TR, Sergeeva AP, Li WL, Wang LS, Boldyrev AI. J Organomet Chem, 2012, 721-722: 148-154 CrossRef Google Scholar

[65] Romanescu C, Galeev TR, Li WL, Boldyrev AI, Wang LS. Acc Chem Res, 2013, 46: 350-358 CrossRef PubMed Google Scholar

[66] Li WL, Romanescu C, Piazza ZA, Wang LS. Phys Chem Chem Phys, 2012, 14: 13663-13669 CrossRef PubMed ADS Google Scholar

[67] Li WL, Ivanov AS, Federič J, Romanescu C, Černušák I, Boldyrev AI, Wang LS. J Chem Phys, 2013, 139: 104312 CrossRef PubMed ADS Google Scholar

[68] Popov IA, Li WL, Piazza ZA, Boldyrev AI, Wang LS. J Phys Chem A, 2014, 118: 8098-8105 CrossRef PubMed ADS Google Scholar

[69] Li WL, Xie L, Jian T, Romanescu C, Huang X, Wang LS. Angew Chem Int Ed, 2014, 53: 1288-1292 CrossRef PubMed Google Scholar

[70] Robinson PJ, Zhang X, McQueen T, Bowen KH, Alexandrova AN. J Phys Chem A, 2017, 121: 1849-1854 CrossRef PubMed ADS Google Scholar

[71] Chen TT, Li WL, Jian T, Chen X, Li J, Wang LS. Angew Chem Int Ed, 2017, 56: 6916-6920 CrossRef PubMed Google Scholar

[72] Tam NM, Pham HT, Duong LV, Pham-Ho MP, Nguyen MT. Phys Chem Chem Phys, 2015, 17: 3000-3003 CrossRef PubMed ADS Google Scholar

[73] Xu C, Cheng L, Yang J. J Chem Phys, 2014, 141: 124301 CrossRef PubMed ADS Google Scholar

[74] Popov IA, Jian T, Lopez GV, Boldyrev AI, Wang LS. Nat Commun, 2015, 6: 8654 CrossRef PubMed ADS Google Scholar

[75] Jian T, Li WL, Popov IA, Lopez GV, Chen X, Boldyrev AI, Li J, Wang LS. J Chem Phys, 2016, 144: 154310 CrossRef PubMed ADS Google Scholar

[76] Li WL, Jian T, Chen X, Li HR, Chen TT, Luo XM, Li SD, Li J, Wang LS. Chem Commun, 2017, 196 CrossRef PubMed Google Scholar

[77] Li WL, Jian T, Chen X, Chen TT, Lopez GV, Li J, Wang LS. Angew Chem Int Ed, 2016, 55: 7358-7363 CrossRef PubMed Google Scholar

[78] Jian T, Li WL, Chen X, Chen TT, Lopez GV, Li J, Wang LS. Chem Sci, 2016, 7: 7020-7027 CrossRef PubMed Google Scholar

[79] Boustani I, Quandt A, Hernández E, Rubio A. J Chem Phys, 1999, 110: 3176-3185 CrossRef ADS Google Scholar

[80] Evans MH, Joannopoulos JD, Pantelides ST. Phys Rev B, 2005, 72: 045434 CrossRef ADS Google Scholar

[81] Kunstmann J, Quandt A. Phys Rev B, 2006, 74: 035413 CrossRef ADS Google Scholar

[82] Lau KC, Pandey R. J Phys Chem C, 2007, 111: 2906-2912 CrossRef Google Scholar

[83] Zhang H, Li Y, Hou J, Tu K, Chen Z. J Am Chem Soc, 2016, 138: 5644-5651 CrossRef PubMed Google Scholar

[84] Zhang H, Li Y, Hou J, Du A, Chen Z. Nano Lett, 2016, 16: 6124-6129 CrossRef PubMed ADS Google Scholar

[85] Li J, Wei Y, Fan X, Wang H, Song Y, Chen G, Liang Y, Wang V, Kawazoe Y. J Mater Chem C, 2016, 4: 9613-9621 CrossRef Google Scholar

[86] Hu PJ. Acta Phys Chim Sin, 2018, 34: 1–2. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1