logo

SCIENTIA SINICA Chimica, Volume 48 , Issue 8 : 804-814(2018) https://doi.org/10.1360/N032018-00065

Chemical bonding theory of single crystal growth and its application to fast single crystal growth of rare earth inorganic materials

More info
  • ReceivedMar 26, 2018
  • AcceptedApr 23, 2018
  • PublishedJul 3, 2018

Abstract

Fast growth of rare earth single crystals with high melting point can effectively reduce the cost of crystal growth. However, too fast growth rate will cause supercooling upon the melt interface, which will result in a series of quality problems such as cracking. In this paper, the crystal growth process is studied from the perspective of chemical bonding at the growing interface. Combining the potential variations of crystal constituents and the coupling of chemical reaction and diffusion at the growing interface, we demonstrate that both crystallization thermodynamics and kinetics coordinately control the chemical bonding process and enhance the dominant role of chemical bonding architectures at the growing interface during crystal growth. In addition, the bonding characteristics of rare earth ions are further studied in the view of the orbital hybridization, which is useful to study the chemical bonding architecture of rare earth ions at the growing interface. For large-size rare earth oxide single crystals, the optimized crystal growth parameters can be designed on the basis of chemical bonding theory of single crystal growth. These growth parameters promote the anisotropic crystal thermodynamic expression and the isotropic crystal kinetic expression that are controlled in different scales, and help to realize the fast growth of large-size rare earth single crystals with high quality.


Funded by

国家重点研发计划“材料基因工程关键技术与支撑平台”重点专项(2016YFB0701004)


References

[1] Xu L, Sun C, Xue D. J Chin Soc Rare Earths, 2018, 36: 1–17 (in Chinese) [徐兰兰, 孙丛婷, 薛冬峰, 中国稀土学报, 2018, 36: 1–17]. Google Scholar

[2] Morrison G, Latshaw AM, Spagnuolo NR, Zur Loye HC. J Am Chem Soc, 2017, 139: 14743-14748 CrossRef PubMed Google Scholar

[3] Hatada N, Shizume K, Uda T. Adv Mater, 2017, 29: 1606569 CrossRef PubMed Google Scholar

[4] Wang Y, Sun C, Tu C, Xue D. Cryst Growth Des, 2018, 18: 1598-1604 CrossRef Google Scholar

[5] Quan J, Yang X, Yang M, Ma D, Huang J, Zhu Y, Wang B. J Cryst Growth, 2018, 483: 200-205 CrossRef ADS Google Scholar

[6] Chen K, Pan W, Xue D. J Phys Chem C, 2016, 120: 20077-20081 CrossRef Google Scholar

[7] Cui D, Ebrahimi M, Rosei F, Macleod JM. J Am Chem Soc, 2017, 139: 16732-16740 CrossRef PubMed Google Scholar

[8] Zhang LLM, Mak TCW. Angew Chem Int Ed, 2017, 56: 16228-16232 CrossRef PubMed Google Scholar

[9] Sahoo PK, Memaran S, Xin Y, Balicas L, Gutiérrez HR. Nature, 2018, 553: 63-67 CrossRef PubMed ADS Google Scholar

[10] Whittaker ML, Smeets PJM, Asayesh-Ardakani H, Shahbazian-Yassar R, Joester D. Angew Chem Int Ed, 2017, 56: 16028-16031 CrossRef PubMed Google Scholar

[11] Rao F, Ding K, Zhou Y, Zheng Y, Xia M, Lv S, Song Z, Feng S, Ronneberger I, Mazzarello R, Zhang W, Ma E. Science, 2017, 358: 1423-1427 CrossRef PubMed ADS Google Scholar

[12] Chen K, Xue D. Nanotechnology, 2018, 29: 024003 CrossRef PubMed ADS Google Scholar

[13] Chen K, Xue D. ACS Appl Mater Interfaces, 2016, 8: 29522-29528 CrossRef Google Scholar

[14] Fu J, Skrabalak SE. Angew Chem Int Ed, 2017, 56: 14169-14173 CrossRef PubMed Google Scholar

[15] Sun C, Li X, Wang H, Xue D. Inorg Chem, 2016, 55: 2969-2976 CrossRef PubMed Google Scholar

[16] Corma A, Li C, Moliner M. Angew Chem Int Ed, 2018, doi: 10.1002/anie.201711422 CrossRef PubMed Google Scholar

[17] Sun C, Xue D. Cryst Growth Des, 2014, 14: 2282-2287 CrossRef Google Scholar

[18] Chen K, Xue D. CrystEngComm, 2017, 19: 1230-1238 CrossRef Google Scholar

[19] Chen K, Song S, Liu F, Xue D. Chem Soc Rev, 2015, 44: 6230-6257 CrossRef PubMed Google Scholar

[20] Ruiz-Agudo E, Burgos-Cara A, Ruiz-Agudo C, Ibañez-Velasco A, Cölfen H, Rodriguez-Navarro C. Nat Commun, 2017, 8: 768 CrossRef PubMed ADS Google Scholar

[21] Kim YY, Freeman CL, Gong X, Levenstein MA, Wang Y, Kulak A, Anduix-Canto C, Lee PA, Li S, Chen L, Christenson HK, Meldrum FC. Angew Chem Int Ed, 2017, 56: 11885-11890 CrossRef PubMed Google Scholar

[22] Sun C, Xue D. CrystEngComm, 2015, 17: 2728-2736 CrossRef Google Scholar

[23] Sun C, Xue D. Cryst Growth Des, 2015, 15: 2867-2873 CrossRef Google Scholar

[24] Sun C, Chen X, Xue D. Cryst Growth Des, 2017, 17: 3178-3184 CrossRef Google Scholar

[25] Chen K, Xue D. Nanoscale, 2016, 8: 17090-17095 CrossRef PubMed Google Scholar

[26] Chen K, Sun C, Xue D. Phys Chem Chem Phys, 2015, 17: 732-750 CrossRef PubMed ADS Google Scholar

[27] Sun C, Xue D. J Cryst Growth, 2017, 470: 27-32 CrossRef ADS Google Scholar

[28] Sun CT, Xue DF. Sci Sin Tech, 2014, 44: 1123–1136 (in Chinese) [孙丛婷, 薛冬峰. 中国科学: 技术科学, 2014, 44: 1123–1136]. Google Scholar

[29] Sun CT, Xue DF. Funct Mater Lett, 2017, 10: 1741001. Google Scholar

[30] Sun C, Xue D. CrystEngComm, 2016, 18: 1262-1272 CrossRef Google Scholar

[31] Sun C, Xue D. Phys Chem Chem Phys, 2017, 19: 12407-12413 CrossRef PubMed ADS Google Scholar

[32] Sun C, Xue D. Phys Chem Chem Phys, 2013, 15: 14414-14419 CrossRef PubMed ADS Google Scholar

[33] Xu D, Xue D. J Syn Cryst, 2006, 35: 598–603 (in Chinese) [许东利, 薛冬峰. 人工晶体学报, 2006, 35: 598–603]. Google Scholar

[34] Sun C, Xue D. J Phys Chem C, 2013, 117: 5505-5511 CrossRef Google Scholar

[35] Zhang Q, Hu SX, Qu H, Su J, Wang G, Lu JB, Chen M, Zhou M, Li J. Angew Chem Int Ed, 2016, 55: 6896-6900 CrossRef PubMed Google Scholar

[36] Polinski MJ, Grant DJ, Wang S, Alekseev EV, Cross JN, Villa EM, Depmeier W, Gagliardi L, Albrecht-Schmitt TE. J Am Chem Soc, 2012, 134: 10682-10692 CrossRef PubMed Google Scholar

[37] Minasian SG, Krinsky JL, Arnold J. Chem Eur J, 2011, 17: 12234-12245 CrossRef PubMed Google Scholar

[38] Strange P, Svane A, Temmerman WM, Szotek Z, Winter H. Nature, 1999, 399: 756-758 CrossRef ADS Google Scholar

[39] Minasian SG, Batista ER, Booth CH, Clark DL, Keith JM, Kozimor SA, Lukens WW, Martin RL, Shuh DK, Stieber SCE, Tylisczcak T, Wen XD. J Am Chem Soc, 2017, 139: 18052-18064 CrossRef PubMed Google Scholar

[40] Xue D, Sun C, Chen X. J Rare Earths, 2017, 35: 837-843 CrossRef Google Scholar

[41] Xue D, Sun C, Chen X. Chin J Chem, 2017, 35: 1452-1458 CrossRef Google Scholar

[42] Xue DF, Sun CT. Sci China Technol Sci, 2017, 60: 1767-1768 CrossRef Google Scholar

[43] Xue D, Zhang H, Liu Y, Yin S, Lu L, Boo JH. Mater Res Bull, 2017, 96: 1 CrossRef Google Scholar

[44] Chen X, Sun C, Wu S, Xue D. Phys Chem Chem Phys, 2017, 19: 8835-8842 CrossRef ADS Google Scholar

[45] Sun C, Chen X, Xue D. Cryst Growth Des, 2017, 17: 2631-2638 CrossRef Google Scholar

[46] Sun C, Xue D. Dalton Trans, 2017, 46: 7888-7896 CrossRef PubMed Google Scholar

[47] Sun C, Xue D. CrystEngComm, 2014, 16: 2129-2135 CrossRef Google Scholar

[48] Sun C, Wang Y, Tu C, Xue D. CrystEngComm, 2015, 17: 3208-3213 CrossRef Google Scholar

[49] Wang Y, Sun C, Tu C, Xue D. CrystEngComm, 2015, 17: 2929-2934 CrossRef Google Scholar

[50] Xu L, Sun C, Xue D. Sci Sin Tech, 2016, 7: 657–673 (in Chinese) [徐兰兰, 孙丛婷, 薛冬峰. 中国科学: 技术科学, 2016, 7: 657–673]. Google Scholar

[51] Xue D, Sun C. Low cost growth of rare earth scintillation single crystals. China Patent, 201710059833.9, 2017-01-27 (in Chinese) [薛冬峰, 孙丛婷. 低成本稀土闪烁晶体的生长. 中国专利, CN201710059833.9, 2017-01-27]. Google Scholar

[52] Xue DF, Sun CT. Low cost growth of rare earth scintillation single crystals. China Patent, 201710060012.7, 2017-01-27 (in Chinese) [薛冬峰, 孙丛婷. 低成本稀土闪烁晶体的生长. 中国专利, CN201710060012.7, 2017-01-27]. Google Scholar

[53] Xue DF, Sun CT. Scintillation single crystals grown by low cost rare earth raw materials and the fast growth technique. China Patent, 201610115940.4, 2016-03-02 (in Chinese) [薛冬峰, 孙丛婷. 由低成本稀土原料制备的闪烁晶体及其低成本生长工艺. 中国专利, CN201610115940.4, 2016-03-02]. Google Scholar

[54] Xue DF, Sun CT. Low cost growth of rare earth scintillation single crystals. China Patent, 201610115971.X, 2016-03-02 (in Chinese) [薛冬峰, 孙丛婷. 低成本稀土闪烁晶体的生长. 中国专利, CN201610115971.X, 2016-03-02]. Google Scholar

[55] Xue DF, Sun CT. Calculation method and program of pulling growth rate in low cost growth of rare earth single crystals. China Patent, 201710785757.X, 2017-09-02 (in Chinese) [薛冬峰, 孙丛婷. 低成本稀土晶体的生长工艺中提拉生长速率的计算方法和计算系统. 中国专利, 201710785757.X, 2017-09-02]. Google Scholar

[56] Xue DF, Sun CT. Temperature field design and low cost growth technique of rare earth single crystals. China Patent, 201710786661.5, 2017-09-02 (in Chinese) [薛冬峰, 孙丛婷. 一种用于稀土晶体生长工艺的温度场结构的设计方法及低成本稀土晶体的生长工艺. 中国专利, CN201710786661.5, 2017-09-02]. Google Scholar

[57] Xue DF, Sun CT. Growth equipment and technique for rare earth crystals and their application to fast growth of rare earth single crystals. China Patent, 201611059073.3, 2016-11-28 (in Chinese) [薛冬峰, 孙丛婷. 稀土晶体生长设备、稀土晶体生长工艺及应用. 中国专利, CN201611059073.3, 2016-11-28]. Google Scholar

[58] Xue DF, Sun CT. Growth equipment and technique for rare earth crystals and their application to fast growth of rare earth single crystals. China Patent, 201611059074.8, 2016-11-28 (in Chinese) [薛冬峰, 孙丛婷. 稀土晶体生长设备、稀土晶体生长工艺及应用. 中国专利, CN201611059074.8, 2016-11-28]. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号