logo

SCIENTIA SINICA Chimica, Volume 48, Issue 8: 815-828(2018) https://doi.org/10.1360/N032018-00067

Research progress in high efficiency thick film polymer solar cells

More info
  • ReceivedMar 30, 2018
  • AcceptedMay 11, 2018
  • PublishedJul 13, 2018

Abstract

Polymer solar cells (PSCs) are considered as the most promising third-generation photovoltaic technology in the future due to their advantages such as light weight, thin film and flexibility. Nowadays, the power conversion efficiencies (PCE) of PSCs have pasted 13%, laying the foundation for their fab-scale production. To realize the scalable fabrication of PSCs, the key issue is developing high efficiency thick film PSCs compatibility to the roll-to-roll (R2R) printing process. In this article, different kinds of high efficiency thick film PSCs including fullerene PSCs, non-fullerene PSCs and ternary PSCs are reviewed according to the recent research progress. The relevant research works on the molecular design of donor and acceptor materials, morphology of photoactive layers, fabrication method and mechanism of solar cells devices are discussed. And the future prospect of the research on thick film PSCs is presented.


Funded by

国家自然科学基金(21574132,21504090)


References

[1] Heeger AJ. Chem Soc Rev, 2010, 39: 2354-2371 CrossRef PubMed Google Scholar

[2] Mazzio KA, Luscombe CK. Chem Soc Rev, 2015, 44: 78-90 CrossRef PubMed Google Scholar

[3] Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148-7151 CrossRef PubMed Google Scholar

[4] Fei Z, Eisner FD, Jiao X, Azzouzi M, Röhr JA, Han Y, Shahid M, Chesman ASR, Easton CD, McNeill CR, Anthopoulos TD, Nelson J, Heeney M. Adv Mater, 2018, 30: 1705209 CrossRef PubMed Google Scholar

[5] Xiao Z, Jia X, Ding L. Sci Bull, 2017, 62: 1562-1564 CrossRef Google Scholar

[6] Bo Z. Sci China Chem, 2018, 61: 507-508 CrossRef Google Scholar

[7] Krebs FC, Espinosa N, Hösel M, Søndergaard RR, Jørgensen M. Adv Mater, 2014, 26: 29-39 CrossRef Google Scholar

[8] Gu X, Zhou Y, Gu K, Kurosawa T, Guo Y, Li Y, Lin H, Schroeder BC, Yan H, Molina-Lopez F, Tassone CJ, Wang C, Mannsfeld SCB, Yan H, Zhao D, Toney MF, Bao Z. Adv Energy Mater, 2017, 7: 1602742 CrossRef Google Scholar

[9] Krebs FC. Sol Energy Mater Sol Cells, 2009, 93: 465-475 CrossRef Google Scholar

[10] Krebs FC. Sol Energy Mater Sol Cells, 2009, 93: 394-412 CrossRef Google Scholar

[11] Po R, Bernardi A, Calabrese A, Carbonera C, Corso G, Pellegrino A. Energy Environ Sci, 2014, 7: 925-943 CrossRef Google Scholar

[12] Duan C, Huang F, Cao Y. Polym Chem, 2015, 6: 8081-8098 CrossRef Google Scholar

[13] Ganesamoorthy R, Sathiyan G, Sakthivel P. Sol Energy Mater Sol Cells, 2017, 161: 102-148 CrossRef Google Scholar

[14] Yang D, Li Z, Zhao X, Sun Z, Yang X. Appl Chem, 2016, 33: 1375–1382 (in Chinese) [杨大磊, 李泽林, 赵晓礼, 孙昭艳, 杨小牛. 应用化学, 2016, 33: 1375–1382]. Google Scholar

[15] Wang J, Wang S, Duan C, Colberts FJM, Mai J, Liu X, Jia X, Lu X, Janssen RAJ, Huang F, Cao Y. Adv Energy Mater, 2017, 7: 1702033 CrossRef Google Scholar

[16] Yang D, Li Z, Li Z, Zhao X, Zhang T, Wu F, Tian Y, Ye F, Sun Z, Yang X. Polym Chem, 2017, 8: 4332-4338 CrossRef Google Scholar

[17] Jin Y, Chen Z, Dong S, Zheng N, Ying L, Jiang XF, Liu F, Huang F, Cao Y. Adv Mater, 2016, 28: 9811-9818 CrossRef PubMed Google Scholar

[18] Jin Y, Chen Z, Xiao M, Peng J, Fan B, Ying L, Zhang G, Jiang XF, Yin Q, Liang Z, Huang F, Cao Y. Adv Energy Mater, 2017, 7: 1700944 CrossRef Google Scholar

[19] Yang D, Zhang T, Zhao X, Zeng G, Li Z, Tian Y, He F, Zhang J, Yang X. Polym Chem, 2016, 7: 5366-5374 CrossRef Google Scholar

[20] Nguyen TL, Choi H, Ko SJ, Uddin MA, Walker B, Yum S, Jeong JE, Yun MH, Shin TJ, Hwang S, Kim JY, Woo HY. Energy Environ Sci, 2014, 7: 3040-3051 CrossRef Google Scholar

[21] Duan C, Gao K, Colberts FJM, Liu F, Meskers SCJ, Wienk MM, Janssen RAJ. Adv Energy Mater, 2017, 7: 1700519 CrossRef Google Scholar

[22] Zhang R, Yang H, Zhou K, Zhang J, Yu X, Liu J, Han Y. Macromolecules, 2016, 49: 6987-6996 CrossRef ADS Google Scholar

[23] Zhang R, Yan Y, Yang H, Yu X, Liu J, Zhang J, Han Y. Polymer, 2018, 138: 49-56 CrossRef Google Scholar

[24] Zhou K, Liu J, Zhang R, Zhao Q, Cao X, Yu X, Xing R, Han Y. Polymer, 2016, 86: 105-112 CrossRef Google Scholar

[25] Liu X, Nian L, Gao K, Zhang L, Qing L, Wang Z, Ying L, Xie Z, Ma Y, Cao Y, Liu F, Chen J. J Mater Chem A, 2017, 5: 17619-17631 CrossRef Google Scholar

[26] Shin I, Ahn H , Yun JH, Jo JW, Park S, Joe S, Bang J, Son HJ. Adv Energy Mater, 2018, 8: 1701405 CrossRef Google Scholar

[27] Li Z, Yang D, Zhao X, Zhang T, Zhang J, Yang X. Adv Funct Mater, 2018, 28: 1705257 CrossRef Google Scholar

[28] Yang X, Loos J, Veenstra SC, Verhees WJH, Wienk MM, Kroon JM, Michels MAJ, Janssen RAJ. Nano Lett, 2005, 5: 579-583 CrossRef PubMed ADS Google Scholar

[29] Gao K, Deng W, Xiao L, Hu Q, Kan Y, Chen X, Wang C, Huang F, Peng J, Wu H, Peng X, Cao Y, Russell TP, Liu F. Nano Energy, 2016, 30: 639-648 CrossRef Google Scholar

[30] Shi S, Chen X, Liu X, Wu X, Liu F, Zhang ZG, Li Y, Russell TP, Wang D. ACS Appl Mater Interfaces, 2017, 9: 24451-24455 CrossRef Google Scholar

[31] Liang Q, Han J, Song C, Wang Z, Xin J, Yu X, Xie Z, Ma W, Liu J, Han Y. J Mater Chem C, 2017, 5: 6842-6851 CrossRef Google Scholar

[32] Liao HC, Ho CC, Chang CY, Jao MH, Darling SB, Su WF. Mater Today, 2013, 16: 326-336 CrossRef Google Scholar

[33] Moon JS, Takacs CJ, Cho S, Coffin RC, Kim H, Bazan GC, Heeger AJ. Nano Lett, 2010, 10: 4005-4008 CrossRef PubMed ADS Google Scholar

[34] Choi H, Ko SJ, Kim T, Morin PO, Walker B, Lee BH, Leclerc M, Kim JY, Heeger AJ. Adv Mater, 2015, 27: 3318-3324 CrossRef PubMed Google Scholar

[35] Chen J, Zhang L, Jiang X, Gao K, Liu F, Gong X, Chen J, Cao Y. Adv Energy Mater, 2017, 7: 1601344 CrossRef Google Scholar

[36] Lee J, Sin DH, Moon B, Shin J, Kim HG, Kim M, Cho K. Energy Environ Sci, 2017, 10: 247-257 CrossRef Google Scholar

[37] Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293 CrossRef PubMed ADS Google Scholar

[38] Huang J, Carpenter JH, Li CZ, Yu JS, Ade H, Jen AKY. Adv Mater, 2016, 28: 967-974 CrossRef PubMed Google Scholar

[39] Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131-142 CrossRef ADS Google Scholar

[40] Lin Y, Zhan X. Mater Horiz, 2014, 1: 470-488 CrossRef Google Scholar

[41] Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170-1174 CrossRef PubMed Google Scholar

[42] Lin Y, He Q, Zhao F, Huo L, Mai J, Lu X, Su CJ, Li T, Wang J, Zhu J, Sun Y, Wang C, Zhan X. J Am Chem Soc, 2016, 138: 2973-2976 CrossRef PubMed Google Scholar

[43] Yang Y, Zhang ZG, Bin H, Chen S, Gao L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138: 15011-15018 CrossRef PubMed Google Scholar

[44] Feng S, Zhang C, Liu Y, Bi Z, Zhang Z, Xu X, Ma W, Bo Z. Adv Mater, 2017, 29: 1703527 CrossRef PubMed Google Scholar

[45] Li T, Dai S, Ke Z, Yang L, Wang J, Yan C, Ma W, Zhan X. Adv Mater, 2018, 30: 1705969 CrossRef PubMed Google Scholar

[46] Fan B, Zhang K, Jiang XF, Ying L, Huang F, Cao Y. Adv Mater, 2017, 29: 1606396 CrossRef PubMed Google Scholar

[47] Guo B, Li W, Guo X, Meng X, Ma W, Zhang M, Li Y. Adv Mater, 2017, 29: 1702291 CrossRef PubMed Google Scholar

[48] Fan Q, Wang Y, Zhang M, Wu B, Guo X, Jiang Y, Li W, Guo B, Ye C, Su W, Fang J, Ou X, Liu F, Wei Z, Sum TC, Russell TP, Li Y. Adv Mater, 2018, 30: 1704546 CrossRef PubMed Google Scholar

[49] Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang ZG, Li Y. Nat Commun, 2018, 9: 743 CrossRef PubMed ADS Google Scholar

[50] Zhang L, Lin B, Ke Z, Chen J, Li W, Zhang M, Ma W. Nano Energy, 2017, 41: 609-617 CrossRef Google Scholar

[51] Gasparini N, Salvador M, Heumueller T, Richter M, Classen A, Shrestha S, Matt GJ, Holliday S, Strohm S, Egelhaaf HJ, Wadsworth A, Baran D, McCulloch I, Brabec CJ. Adv Energy Mater, 2017, 7: 1701561 CrossRef Google Scholar

[52] Ameri T, Li N, Brabec CJ. Energy Environ Sci, 2013, 6: 2390-2413 CrossRef Google Scholar

[53] You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y. Nat Commun, 2013, 4: 1446 CrossRef PubMed ADS Google Scholar

[54] Ameri T, Khoram P, Min J, Brabec CJ. Adv Mater, 2013, 25: 4245-4266 CrossRef PubMed Google Scholar

[55] Lu L, Kelly MA, You W, Yu L. Nat Photon, 2015, 9: 491-500 CrossRef ADS Google Scholar

[56] Yu R, Yao H, Hou J. Adv Energy Mater, 2018: 1702814. Google Scholar

[57] Zhang L, Ma W. Chin J Polym Sci, 2017, 35: 184-197 CrossRef Google Scholar

[58] Zhao F, Li Y, Wang Z, Yang Y, Wang Z, He G, Zhang J, Jiang L, Wang T, Wei Z, Ma W, Li B, Xia A, Li Y, Wang C. Adv Energy Mater, 2017, 7: 1602552 CrossRef Google Scholar

[59] Zhang J, Zhao Y, Fang J, Yuan L, Xia B, Wang G, Wang Z, Zhang Y, Ma W, Yan W, Su W, Wei Z. Small, 2017, 13: 1700388 CrossRef PubMed Google Scholar

[60] Zhang G, Zhang K, Yin Q, Jiang XF, Wang Z, Xin J, Ma W, Yan H, Huang F, Cao Y. J Am Chem Soc, 2017, 139: 2387-2395 CrossRef PubMed Google Scholar

[61] Gasparini N, Lucera L, Salvador M, Prosa M, Spyropoulos GD, Kubis P, Egelhaaf HJ, Brabec CJ, Ameri T. Energy Environ Sci, 2017, 10: 885-892 CrossRef Google Scholar

[62] Zhang T, Zhao X, Yang D, Tian Y, Yang X. Adv Energy Mater, 2018, 8: 1701691 CrossRef Google Scholar

[63] Fan B, Zhu P, Xin J, Li N, Ying L, Zhong W, Li Z, Ma W, Huang F, Cao Y. Adv Energy Mater, 2018, 8: 1703085 CrossRef Google Scholar

[64] Huang J, Wang H, Yan K, Zhang X, Chen H, Li CZ, Yu J. Adv Mater, 2017, 29: 1606729 CrossRef PubMed Google Scholar

  • Figure 1

    The molecular structures of donor polymers: (a) BDT-ffBX-DT, (b) PBTIBDTT, (c) NT812, (d) PNTT, (e) PBTI3T-S and (f) PPDT2FBT [1318].

  • Figure 2

    (a) The molecular structures of polymer C10-Th100 and Cn-Th00. GIXD fitting analysis of (b) (100) crystal packing distance and coherence length, and (c) π-stacking crystal packing distance and coherence length for pure C10-Thx films [21] (color online).

  • Figure 3

    (a) The molecular structures of the random polymers. (b–e) Optical microscopy (OM) and (f–i) transmission electron microscopy (TEM) images of (b, f) FBT-Th4, (c, g) PDT2fBT-BT10, (d, h) PDT2fBT-BT20, and (e, i) PDT2fBT-BT30. (j) PCE histogram of 1 cm2 solar cells obtained from nine positions using a 0.2 cm2 shadow mask. (k) Evolution of the PCEs with the active layer thickness of the solar cells [25] (color online).

  • Figure 4

    (a) Chemical structure of PBTIBDTT-S. (b) Device efficiencies of PSCs with different Mns as a function of thickness of active layer. (c–f) TEM images of optimal PBTIBDTT-S:PC71BM blend films with different Mns [27] (color online).

  • Figure 5

    (a) Chemical structures of components of the active layer including the donor polymer DT-PDPP2T-TT (P2), the fullerene acceptor PC71BM and the solvent additive DPE. (b) Device structure of solar cells based on P2:PC71BM. EDS S mapping of optimum devices prepared from (c) CF:DCB, (d) CB, and (e) CB:DPE, respectively. Scale bar is 100 nm. (f) Chemical structure of the donor polymer P4TNTz-2F. TM-AFM (g) topography images and (h) phase images of P4TNTz-2F based blend films [34,36] (color online).

  • Figure 6

    (a) Chemical structures of the donor polymers PffBT4T-2OD, PBTff4T-2OD and PNT4T-2OD. (b) (010) diffraction peak (obtained from XRD) of PffBT4T-2OD pure films spun at different rates. (c) UV-vis absorption spectra of PffBT4T-2OD:PC61PM blend films obtained with different spin rates and substrate temperatures [37] (color online).

  • Figure 7

    Non-fullerene small molecule acceptors for efficient thick film non-fullerene polymer solar cells: (a) ITIC, (b) IDIC, (c) m-ITIC, (d) IDT-OB, (e) FOIC and (f) IT-4F [4145].

  • Figure 8

    Chemical structures of donor polymers for efficient thick film non-fullerene polymer solar cells: (a) PTzBI, (b) PTZ1, (c) PM6, (d) PTQ10, (e) J61 and (f) PBDB-T [4649].

  • Figure 9

    (a) FTPS data of P3HT:IDTBR and P3HT:PCBM devices. (b) Schematic of the different molecular interaction of P3HT with fullerene and IDTBR acceptors [50] (color online).

  • Figure 10

    (a) The chemical structures of PTB7-Th, p-DTS(FBTTH2)2, and PC71BM. (b) Schematics of the binary system and ternary system. (c) OSC modules fabricated with slot-die coating. (d) OSC modules powered LED lamps. (e) J-V curve of the large-area OSC modules [59] (color online).

  • Figure 11

    (a) Chemical structures of donor polymer PDOT, fullerene acceptor PC71BM and non-fullerene small molecule acceptor ITIC. (b) J-V curves and performance parameters of ternary polymer solar cells [62] (color online).

  • Figure 12

    (a) Chemical structures of donor polymers PBTA-Si and PtzBI-Si and polymer acceptor N2200. (b) UV-vis absorption and (c) energy level alignments for neat films. (d) J-V characteristics for the thick-film all-polymer solar cells based on PBTA-Si:N2200 (2:1, wt%:wt%, device A), PTzBI-Si:N2200 (2:1, wt%:wt%, device B), and PBTA-Si:PTzBI-Si:N2200 (1:1:1, wt%:wt%:wt%, device C). (e) J-V curves for ternary all-polymer solar cells with various active layer thicknesses [63] (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1