logo

SCIENTIA SINICA Chimica, Volume 48, Issue 7: 736-742(2018) https://doi.org/10.1360/N032018-00105

Mechanism investigation for anoin-assisted nickel catalyzed C–F bond functionalization reaction: a DFT study

More info
  • ReceivedApr 28, 2018
  • AcceptedJun 13, 2018
  • PublishedJun 27, 2018

Abstract

C–F bond functionalization still faces with great challenges in synthetic chemistry due to the inert nature of C–F bond in organic compounds. Herein, the newly reported DFT method M11-L was used to determine the mechanism of nickel catalyzed C–F/C–H bond cross coupling involving the C–F bond cleavage of flouroarenes and C–H bond functionalization of oxazoles. DFT calculations revealed that fluoride would stabilize the nickel(0) compound to afford an active nickel(0) ate-complex. With the assistance of fluoride, the oxidative addition of C–F bond to nickel(0) ate-complex would yield an active nickel(II) species, which is the rate-determining step in this catalytic cycle. The following C–H bond cleavage step would proceed via a direct deprotonation step under the attack of Brønsted base, to generate diarylnickel(II) species. Finally, reductive elimination step would occur to give the coupling product with regeneration of active nickel(0) ate-complex. In this pathway, we found that the relative free energies of nickel ate-complex species are more stable than commonly assumed neutral-nickel intermediates. This work could provide a new way for the mechanism study of inert C--F bond activation reactions.


Funded by

国家自然科学基金(21772020)

中央高校基本科研业务费(106112017CDJXY220007)


Supplement

补充材料

本文的补充材料见网络版http://chemcn.scichina.com. 补充材料为作者提供的原始数据, 作者对其学术质量和内容负责.


References

[1] Corbet JP, Mignani G. Chem Rev, 2006, 106: 2651-2710 CrossRef PubMed Google Scholar

[2] Amii H, Uneyama K. Chem Rev, 2009, 109: 2119-2183 CrossRef PubMed Google Scholar

[3] Eisenstein O, Milani J, Perutz RN. Chem Rev, 2017, 117: 8710-8753 CrossRef PubMed Google Scholar

[4] Clot E, Eisenstein O, Jasim N, Macgregor SA, McGrady JE, Perutz RN. Acc Chem Res, 2011, 44: 333-348 CrossRef PubMed Google Scholar

[5] Ahrens T, Kohlmann J, Ahrens M, Braun T. Chem Rev, 2015, 115: 931-972 CrossRef PubMed Google Scholar

[6] Kiso Y, Tamao K, Kumada M. J Organomet Chem, 1973, 50: C12-C14 CrossRef Google Scholar

[7] Ichitsuka T, Fujita T, Ichikawa J. ACS Catal, 2015, 5: 5947-5950 CrossRef Google Scholar

[8] Tobisu M, Xu T, Shimasaki T, Chatani N. J Am Chem Soc, 2011, 133: 19505-19511 CrossRef PubMed Google Scholar

[9] Liu XW, Echavarren J, Zarate C, Martin R. J Am Chem Soc, 2015, 137: 12470-12473 CrossRef PubMed Google Scholar

[10] Zhou J, Kuntze-Fechner MW, Bertermann R, Paul USD, Berthel JHJ, Friedrich A, Du Z, Marder TB, Radius U. J Am Chem Soc, 2016, 138: 5250-5253 CrossRef PubMed Google Scholar

[11] Yu D, Lu L, Shen Q. Org Lett, 2013, 15: 940-943 CrossRef PubMed Google Scholar

[12] Yu D, Wang CS, Yao C, Shen Q, Lu L. Org Lett, 2014, 16: 5544-5547 CrossRef PubMed Google Scholar

[13] Yin Y, Yue X, Zhong Q, Jiang H, Bai R, Lan Y, Zhang H. Adv Synth Catal, 2018, 360: 1639-1643 CrossRef Google Scholar

[14] Qi X, Li Y, Bai R, Lan Y. Acc Chem Res, 2017, 50: 2799-2808 CrossRef PubMed Google Scholar

[15] Liu D, Tang S, Yi H, Liu C, Qi X, Lan Y, Lei A. Chem Eur J, 2014, 20: 15605-15610 CrossRef PubMed Google Scholar

[16] Yu S, Liu S, Lan Y, Wan B, Li X. J Am Chem Soc, 2015, 137: 1623-1631 CrossRef PubMed Google Scholar

[17] Tang S, Liu K, Long Y, Qi X, Lan Y, Lei A. Chem Commun, 2015, 51: 8769-8772 CrossRef PubMed Google Scholar

[18] Zhang T, Qi X, Liu S, Bai R, Liu C, Lan Y. Chem Eur J, 2017, 23: 2690-2699 CrossRef PubMed Google Scholar

[19] Li Y, Zou L, Bai R, Lan Y. Org Chem Front, 2018, 5: 615-622 CrossRef Google Scholar

[20] Liu S, Qi XT, Qu L-B, Bai R, Lan Y. Catal Sci Technol, 2011, 44: 333–348. Google Scholar

[21] Frisch MJ. Gaussian 09, Revision D.01. Wallingford (CT): Gaussian, Inc. 2013. The full author list is shown in Supporting Information online.. Google Scholar

[22] Becke AD. J Chem Phys, 1993, 98: 5648-5652 CrossRef ADS Google Scholar

[23] Lee C, Yang W, Parr RG. Phys Rev B, 1988, 37: 785-789 CrossRef ADS Google Scholar

[24] Dolg M, Wedig U, Stoll H, Preuss H. J Chem Phys, 1987, 86: 866-872 CrossRef ADS Google Scholar

[25] Peverati R, Truhlar DG. J Phys Chem Lett, 2012, 3: 117-124 CrossRef Google Scholar

[26] Peverati R, Truhlar DG. Phys Chem Chem Phys, 2012, 14: 11363-11370 CrossRef PubMed ADS Google Scholar

[27] Xu T, Qi XT, Lan Y. Sci Sin Chim, 2016, 46: 616–622 (in Chinese) [徐婷, 戚孝天, 蓝宇. 中国科学: 化学, 2016, 46: 616–622]. Google Scholar

[28] Luo XL, Li YZ, Qi XT, Zhu L, Chen CG, Lan Y. Sci Sin Chim, 2017, 47: 341–349 (in Chinese) [罗小玲, 李英姿, 戚孝天, 朱磊, 陈昌国, 蓝宇. 中国科学: 化学, 2017, 47: 341–349]. Google Scholar

[29] Qi X, Zhang H, Shao A, Zhu L, Xu T, Gao M, Liu C, Lan Y. ACS Catal, 2015, 5: 6640-6647 CrossRef Google Scholar

[30] Zhu L, Qi X, Lan Y. Organometallics, 2016, 35: 771-777 CrossRef Google Scholar

[31] Marenich AV, Cramer CJ, Truhlar DG. J Phys Chem B, 2009, 113: 6378-6396 CrossRef PubMed Google Scholar

[32] Legault CY. CYLView, Version 1.0b. Sherbrooke: Université de Sherbrooke, 2009. Google Scholar

  • Figure 1

    Nickel catalyzed C–F/C–H cross coupling reaction (color online).

  • Figure 2

    Possible mechanism for nickel catalyzed C–F/C–H cross coupling reaction (color online).

  • Figure 3

    Neutral and anionic nickel species catalyzed C–F bond oxidative addition of fluorobenzene (color online).

  • Figure 4

    Free energy profiles for C–F bond oxidative addition of fluorobenzene to neutral and anionic nickel species. Energy values are given in kcal/mol and represent the relative free energies that were calculated using the M11-L method in solvent (cyclohexane). Bond lengths are given in angstrom (color online).

  • Figure 5

    Optimized geometries of transition states 4-ts, 4a-ts and 4b-ts. Bond lengths are given in angstrom (color online).

  • Figure 6

    Free energy profiles for fluorine anoin-assisted nickel catalyzed C–H bond cleavage of benzoxazole and C–C bond formation steps. Energy values are given in kcal/mol and represent the relative free energies that were calculated using the M11-L method in solvent (cyclohexane). Bond lengths are given in angstrom (color online).

  • Figure 7

    Optimized geometries of transition states 8-ts, 12-ts and 16-ts. Bond lengths are given in angstrom (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1