logo

SCIENTIA SINICA Chimica, Volume 49, Issue 1: 80-90(2019) https://doi.org/10.1360/N032018-00126

Effect of ultrasonic time on adsorption of Eu(III) by nano structured hematite and its mechanism

More info
  • ReceivedMay 30, 2018
  • AcceptedAug 7, 2018
  • PublishedDec 24, 2018

Abstract

In this paper, the nanostructured hematite was prepared by heat treatment of siderite in air atmosphere. The influence of ultrasonic time on the physicochemical properties of nano structured hematite was studied. The effects of reaction time, pH, ionic strength and initial concentration on the adsorption of Eu(III) hematite with different ultrasonic time were investigated. The series of characterization showed that nanostructured hematite can be formed by heating siderite. The size and crystallinity of nanoscale hematite were further reduced by ultrasound, resulting in increasement of the specific surface area. Compared with the nanostructured hematite without ultrasound, nanostructured hematite (PCH-3) after ultrasound for 1 h obtained the biggest specific surface area (29.37 m2/g). Batch experiments results indicated that PCH-3 had the maximum rate constant (K2=3.49 g/(mg min)) and the maximum adsorption capacity (4.88 mg/g) for Eu(III) adsorption at T=288 K, pH 5.5. X-ray photoelectron spectroscopy (XPS) analysis confirmed that oxygen-containing functional groups (especially hydroxyl groups) were the main adsorption sites of Eu(III) enriched by nano structured hematite. The results showed that proper ultrasound treatment can significantly improve the surface reactivity of the nano structured. This work is of great theoretical value for the adsorption of heavy metal ions by nanostructured mineral materials.


Funded by

国家自然科学基金(41772038,41572029)

广东省放射性核素污染控制与资源化重点实验室开放基金(GZDX2017K002)


References

[1] Hu B, Qiu M, Hu Q, Sun Y, Sheng G, Hu J. ACS Sustain Chem Eng, 2017. Google Scholar

[2] Linghu W, Yang H, Sun Y, Sheng G, Huang Y. ACS Sustain Chem Eng, 2017, 5: 5608-5616 CrossRef Google Scholar

[3] Liu J, Luo X, Wang J, Xiao T, Chen D, Sheng G, Yin M, Lippold H, Wang C, Chen Y. Environ Pollut, 2017, 224: 445-453 CrossRef PubMed Google Scholar

[4] Chen X, Zhang K, Yu H, Yu L, Ge H, Yue J. J Radioanal Nucl Ch, 2018, 7: 1–9. Google Scholar

[5] Hu B, Hu Q, Chen C, Sun Y, Xu D, Sheng G. Chem Eng J, 2017, 322: 66-72 CrossRef Google Scholar

[6] Liu H, Zhu Y, Xu B, Li P, Sun Y, Chen T. J Hazard Mater, 2017, 322: 488-498 CrossRef PubMed Google Scholar

[7] Wang X, Sun Y, Alsaedi A, Hayat T, Wang X. Chem Eng J, 2015, 264: 570-576 CrossRef Google Scholar

[8] Chang K, Sun Y, Ye F, Li X, Sheng G, Zhao D, Linghu W, Li H, Liu J. Chem Eng J, 2017, 325: 665-671 CrossRef Google Scholar

[9] El Afifi EM, Attallah MF, Borai EH. J Environ Radioact, 2016, 151: 156-165 CrossRef PubMed Google Scholar

[10] Li M, Liu H, Zhu H, Gao H, Zhang S, Chen T. J Mol Liquids, 2017, 233: 364-369 CrossRef Google Scholar

[11] Borai EH, Harjula R, Malinen L, Paajanen A. J Hazard Mater, 2009, 172: 416-422 CrossRef PubMed Google Scholar

[12] Jang JH, Dempsey BA, Burgos WD. Water Res, 2008, 42: 2269-2277 CrossRef PubMed Google Scholar

[13] Minitha CR, Suresh R, Maity UK, Haldorai Y, Subramaniam V, Manoravi P, Joseph M, Rajendra Kumar RT. Ind Eng Chem Res, 2018, 57: 1225-1232 CrossRef Google Scholar

[14] Chen C, Hu J, Shao D, Li J, Wang X. J Hazard Mater, 2009, 164: 923-928 CrossRef PubMed Google Scholar

[15] Guo H, Stüben D, Berner Z. Appl Geochem, 2007, 22: 1039-1051 CrossRef ADS Google Scholar

[16] Huber F, Schild D, Vitova T, Rothe J, Kirsch R, Schäfer T. Geochim Cosmochim Acta, 2012, 96: 154-173 CrossRef ADS Google Scholar

[17] Zhu Y, Liu H, Chen T, Xu B, Li P. J Mol Liquids, 2016, 218: 565-570 CrossRef Google Scholar

[18] Alexandratos VG, Behrends T, van Cappellen P. Environ Sci Technol, 2017, 51: 2140-2150 CrossRef PubMed ADS Google Scholar

[19] Yang S, Zong P, Ren X, Wang Q, Wang X. ACS Appl Mater Interfaces, 2012, 4: 6891-6900 CrossRef PubMed Google Scholar

[20] Xing B, Chen T, Qing C, Liu H, Xie Q, Xie J. J Chin Ceram Soc, 2016, 44: 1–6 (in Chinese) [邢波波, 陈天虎, 庆承松, 刘海波, 谢巧勤, 谢晶晶. 硅酸盐学报, 2016, 44: 1–6]. Google Scholar

[21] Li M, Sun Y, Liu H, Chen T, Hayat T, Alharbi NS, Chen C. ACS Sustain Chem Eng, 2017, 5: 5493-5502 CrossRef Google Scholar

[22] Li M, Liu H, Chen T, Lin W. Appl Geochem, 2017, 84: 154-161 CrossRef ADS Google Scholar

[23] Liu H, Li M, Chen T, Chen C, Alharbi NS, Hayat T, Chen D, Zhang Q, Sun Y. Environ Sci Technol, 2017, 51: 9227-9234 CrossRef PubMed ADS Google Scholar

[24] Sheng G, Dong H, Shen R, Li Y. Chem Eng J, 2013, 217: 486-494 CrossRef Google Scholar

[25] Sun Y, Zhang R, Ding C, Wang X, Cheng W, Chen C, Wang X. Geochim Cosmochim Acta, 2016, 180: 51-65 CrossRef ADS Google Scholar

[26] Korichi S, Bensmaili A. J Hazard Mater, 2009, 169: 780-793 CrossRef PubMed Google Scholar

[27] Chmielarz L, Kuśtrowski P, Dziembaj R, Cool P, Vansant EF. Catal Today, 2007, 119: 181-186 CrossRef Google Scholar

[28] Liu H, Chen T, Zou X, Qing C, Frost RL. J Raman Spectrosc, 2013, 44: 1609-1614 CrossRef ADS Google Scholar

[29] Zoppi A, Lofrumento C, Castellucci EM, Sciau P. J Raman Spectrosc, 2008, 39: 40-46 CrossRef ADS Google Scholar

[30] Zhang R, Liu H, Zou X, Qing C, Li M, Chen D. Environ Sci, 2017, 38: 3519–3528. Google Scholar

[31] Duan S, Li J, Liu X, Wang Y, Zeng S, Shao D, Hayat T. ACS Sustain Chem Eng, 2016, 4: 3368-3378 CrossRef Google Scholar

[32] He Y, Chen Y G, Ye W M. Environ Earth Sci, 2016, 75: 807--808. Google Scholar

[33] Yuan K, Taylor SD, Powell BA, Becker U. Surf Sci, 2017, 664: 120-128 CrossRef ADS Google Scholar

[34] Naeimi S, Faghihian H. Sep Purif Technol, 2017, 175: 255-265 CrossRef Google Scholar

[35] Shao D, Hu J, Wang X. Plasma Processes Polym, 2010, 7: 977-985 CrossRef Google Scholar

[36] Hu J, Chen CL, Sheng GD, Li J, Chen Y, Wang X. Radiochim Acta, 2010, 98: 421-429 CrossRef Google Scholar

[37] Sun Y, Wu ZY, Wang X, Ding C, Cheng W, Yu SH, Wang X. Environ Sci Technol, 2016, 50: 4459-4467 CrossRef PubMed ADS Google Scholar

[38] Aamrani SE, Giménez J, Rovira M, Seco F, Grivé M, Bruno J, Duro L, de Pablo J. Appl Surf Sci, 2007, 253: 8794-8797 CrossRef ADS Google Scholar

[39] Li M, Liu H, Chen T, Hayat T, Alharbi NS, Chen C. J Mol Liquids, 2017, 236: 445-451 CrossRef Google Scholar

[40] Sharma P, Singh G, Tomar R. J Colloid Interface Sci, 2009, 332: 298-308 CrossRef PubMed ADS Google Scholar

[41] Wu J, Li B, Liao J, Feng Y, Zhang D, Zhao J, Wen W, Yang Y, Liu N. J Environ Radioact, 2009, 100: 914-920 CrossRef PubMed Google Scholar

[42] Chen H, Huang S, Zhang Z, Liu Y, Wang X. Acta Chim Sinica, 2017, 75: 560. Google Scholar

[43] Zhao G, Ren X, Gao X, Tan X, Li J, Chen C, Huang Y, Wang X. Dalton Trans, 2011, 40: 10945-10952 CrossRef PubMed Google Scholar

[44] Yang S, Wang X, Chen Z, Li Q, Niu B, Wang X. Prog Chem, 2018, 30: 225–242 (in Chinese) [杨姗也, 王祥学, 陈中山, 李倩, 韦犇犇, 王祥科. 化学进展. 2018, 30: 225–242]. Google Scholar

[45] Liang Y, Gu P C, Wen Y, Yu S, Wang J, Wang X. Prog Chem, 2017, 29: 1062–1071 (in Chinese) [梁宇, 顾鹏程, 文姚, 于淑君, 王建, 王祥科.化学进展, 2017, 29: 1062–1071]. Google Scholar

[46] Tan X, Fang M, Li J, Lu Y, Wang X. J Hazard Mater, 2009, 168: 458-465 CrossRef PubMed Google Scholar

[47] Sheng G, Yang S, Sheng J, Hu J, Tan X, Wang X. Environ Sci Technol, 2011, 45: 7718-7726 CrossRef ADS Google Scholar

[48] Sun Y, Wang Q, Chen C, Tan X, Wang X. Environ Sci Technol, 2012, 46: 6020-6027 CrossRef PubMed ADS Google Scholar

[49] Song W, Liu M, Hu R, Tan X, Li J. Chem Eng J, 2014, 246: 268-276 CrossRef Google Scholar

  • Figure 1

    The preparation and adsorption processes of nanostructured hematite (color online).

  • Figure 2

    TEM and SEM images of siderite and nanostructured hematite. (a) TEM of siderite; (b–f) SEM images of PCH-0, PCH-2, PCH-3, PCH-4 and PCH-5.

  • Figure 3

    XRD (a) and FT-IR (b) of nanostructured hematite (color online).

  • Figure 4

    Spectroscopic analysis of nanostructured hematite: (a) UV-Vis-DR; (b) Raman (color online).

  • Figure 5

    N2 adsorption-desorption curves (a) and total pore size distributions (b) of nanostructured hematite (color online).

  • Figure 6

    Adsorption kinetics (a) and pseudo-second-order kinetic model (b) of Eu(III) on nanostructured hematite. CEu(III)=5.5 mg/L,m/V=1.0 g/L,I=0.01 mol/L NaCl, T=288 K (color online).

  • Figure 7

    (a) Effect of pH and ionic strength of Eu(III) adsorption on nanostructured hematite; (b) change of distribution coefficient under different pH and ionic strength; (c) Zeta potential; (d) distribution of Eu(III) species in NaCl. CEu(III)=5.5 mg/L, m/V=1.0 g/L, T=288 K (color online).

  • Figure 8

    Adsorption isotherms of Eu(III) on nanostructured hematite. CEu(III)=0~30 mg/L, m/V=1.0 g/L, T=288 K, I=0.01 mol/L NaCl (color online).

  • Figure 9

    XPS analysis of Eu(III) on nanostructured hematite. (a) Eu 3d; (b) O 1s (color online).

  • Table 1   Calculated data of UV-Vis-DR

    样品

    SUV-vis-DR (%)

    Ia

    Ib

    Ic

    PCH-0

    37.66

    0

    62.34

    PCH-3

    38.85

    20.43

    40.72

    PCH-4

    28.09

    35.56

    36.35

    PCH-5

    27.43

    37.27

    35.30

  • Table 2   Selective parameters of nanostructured hematite

    样品

    晶粒尺寸d (nm)

    比表面 (m2/g)

    平均孔径(nm)

    总孔体积(cc/g)

    pHPZC

    PCH-0

    331.8

    20.63

    9.98

    5.15×10−2

    3.41

    PCH-1

    271.5

    21.32

    10.22

    5.55×10−2

    /

    PCH-2

    175.4

    22.51

    11.43

    6.70×10−2

    4.62

    PCH-3

    139.7

    29.37

    9.89

    7.26×10−2

    4.71

    PCH-4

    39.4

    27.35

    10.88

    7.44×10−2

    4.51

    PCH-5

    36.1

    19.90

    13.06

    6.50×10−2

    /

  • Table 3   Adsorption kinetic models of Eu(III) on nanostructured hematite

    样品

    准一级动力学

    准二级动力学

    吸附量(mg/g)

    速率常数K1 (g/(mg min))

    R2

    吸附量

    (mg/g)

    速率常数K2 (g/(mg min))

    R2

    PCH-0

    1.01

    0.19

    0.6817

    3.65

    0.96

    0.9993

    PCH-1

    1.27

    0.26

    0.6418

    3.94

    1.63

    0.9999

    PCH-2

    1.31

    0.27

    0.8203

    4.42

    0.91

    0.9998

    PCH-3

    1.30

    0.64

    0.9026

    4.88

    3.49

    0.9999

    PCH-4

    1.37

    0.38

    0.5364

    4.87

    2.22

    0.9999

    PCH-5

    1.26

    0.39

    0.5868

    4.68

    2.10

    0.9999

  • Table 4   Langmuir and Freundlich models of Eu(III) on nanostructured hematite

    样品

    Langmuir

    Freundlich

    吸附量(mg/g)

    KL (L/mg)

    R2

    KF ((mg L)n mg/g)

    1/n

    R2

    PCH-0

    4.19

    0.63

    0.9993

    1.49

    0.33

    0.9351

    PCH-3

    5.39

    0.60

    0.9959

    1.96

    0.32

    0.9665

    PCH-4

    5.07

    0.42

    0.9968

    1.46

    0.39

    0.9317

    PCH-5

    4.60

    0.30

    0.9931

    1.04

    0.47

    0.8958

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1