logo

SCIENTIA SINICA Chimica, Volume 49, Issue 1: 91-102(2019) https://doi.org/10.1360/N032018-00129

Theoretical study on the removal of uranyl by nitrogen, phosphorus and sulfur doped graphene materials

More info
  • ReceivedJun 5, 2018
  • AcceptedAug 7, 2018
  • PublishedDec 24, 2018

Abstract

With the development of nuclear energy, the treatment of radioactive waste has become one of the most urgent environmental problems. Radionuclide uranium is chemical toxic and radioactive. The removal of uranium from radioactive waste water is of great significance in environmental protection. In recent years, graphene-based materials had been widely used in the treatment of radioactive waste water due to their excellent properties. 12 kinds of N, P and S doped graphene models were constructed from the theoretical perspective to simulate the interaction between the doped graphene materials and uranyl ions in the aqueous environment. Based on the density functional theory (DFT) method, the geometric configuration, adsorption energy, differential charge density and vibration frequency of 24 doped graphene/uranyl complexes with different adsorption sites (U or Oax) were calculated and analyzed. It is found that: (1) the main adsorption site for uranyl ion on the surface of N, P and S doped graphene was the axial oxygen atom (Oax); (2) at the same time, the coordination water molecules of uranyl ion played an important role during the adsorption process; (3) P&S doped graphene displayed the best adsorption capacity towards uranyl and the maximum adsorption energy was 38.40 kcal/mol; (4) the adsorption ability of double element doped graphene materials were obviously higher than that of the single ones. This research provided theoretical basis for broadening the horizon for the design of new radioactive waste water treatment materials.


Funded by

国家重点研发计划(2017YFA020700)

国家自然科学基金(21777039)

中央高校基础研究经费(2017YQ001)


Supplement

补充材料

本文的补充材料见网络版http://chemcn.scichina.com. 补充材料为作者提供的原始数据,作者对其学术质量和内容负责.


References

[1] Ding C, Cheng W, Sun Y, Wang X. Geochim Cosmochim Acta, 2015, 165: 86-107 CrossRef ADS Google Scholar

[2] Sun Y, Li J, Wang X. Geochim Cosmochim Acta, 2014, 140: 621-643 CrossRef ADS Google Scholar

[3] Anirudhan TS, Radhakrishnan PG. J Environ Radioact, 2009, 100: 250-257 CrossRef PubMed Google Scholar

[4] Tang Y, Reeder RJ. Geochim Cosmochim Acta, 2009, 73: 2727-2743 CrossRef ADS Google Scholar

[5] Bargar JR, Reitmeyer R, Lenhart JJ, Davis JA. Geochim Cosmochim Acta, 2000, 64: 2737-2749 CrossRef ADS Google Scholar

[6] Shao D, Jiang Z, Wang X, Li J, Meng Y. J Phys Chem B, 2009, 113: 860-864 CrossRef PubMed Google Scholar

[7] Shao DD, Li JX, Wang XK. Sci China Chem, 2014, 57: 1449-1458 CrossRef Google Scholar

[8] Song WC, Shao DD, Lu SS, Wang XK. Sci China Chem, 2014, 57: 1291-1299 CrossRef Google Scholar

[9] Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X. Chem Soc Rev, 2018, 47: 2322-2356 CrossRef PubMed Google Scholar

[10] Chen H, Huang S, Zhang Z, Liu Y, Wang X. Acta Chim Sin, 2017, 75: 560 CrossRef Google Scholar

[11] Pang H, Wang X, Yao W, Yu S, Wang X. Sci Sin Chim, 2018, 48: 58-73 CrossRef Google Scholar

[12] Kong L, Enders A, Rahman TS, Dowben PA. J Phys-Condens Matter, 2014, 26: 443001 CrossRef PubMed ADS Google Scholar

[13] Cui L, Guo X, Wei Q, Wang Y, Gao L, Yan L, Yan T, Du B. J Colloid Interface Sci, 2015, 439: 112-120 CrossRef PubMed ADS Google Scholar

[14] Singh VK, Elomaa O, Johansson LS, Hannula SP, Koskinen J. Carbon, 2014, 79: 227-235 CrossRef Google Scholar

[15] Ding C, Cheng W, Sun Y, Wang X. Dalton Trans, 2014, 43: 3888-3896 CrossRef PubMed Google Scholar

[16] Sun Y, Ding C, Cheng W, Wang X. J Hazard Mater, 2014, 280: 399-408 CrossRef PubMed Google Scholar

[17] Lattao C, Cao X, Mao J, Schmidt-Rohr K, Pignatello JJ. Environ Sci Technol, 2014, 48: 4790-4798 CrossRef PubMed ADS Google Scholar

[18] Wang X, Huang S, Zhu L, Tian X, Li S, Tang H. Carbon, 2014, 69: 101-112 CrossRef Google Scholar

[19] Zhao D, Gao X, Chen S, Xie F, Feng S, Alsaedi A, Hayat T, Chen C. J Colloid Interface Sci, 2018, 524: 129-138 CrossRef PubMed ADS Google Scholar

[20] Gao Y, Wu J, Ren X, Tan X, Hayat T, Alsaedi A, Cheng C, Chen C. Environ Sci-Nano, 2017, 4: 1016-1024 CrossRef Google Scholar

[21] Gao Y, Ren X, Wu J, Hayat T, Alsaedi A, Cheng C, Chen C. Environ Sci-Nano, 2018, 5: 362-371 CrossRef Google Scholar

[22] Li J, Chen C, Zhang R, Wang X. Sci China Chem, 2015, 59: 150-158 CrossRef Google Scholar

[23] Yang SB, Chen CL, Chen Y, Li JX, Wang DQ, Wang XK, Hu WP. Chem PlusChem, 2015, 80: 480–484. Google Scholar

[24] Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J, Shao D, Wang X. Dalton Trans, 2012, 41: 6182-6188 CrossRef PubMed Google Scholar

[25] Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X. Environ Sci Technol, 2015, 49: 4255-4262 CrossRef PubMed ADS Google Scholar

[26] Li Z, Chen F, Yuan L, Liu Y, Zhao Y, Chai Z, Shi W. Chem Eng J, 2012, 210: 539-546 CrossRef Google Scholar

[27] Chen S, Hong J, Yang H, Yang J. J Environ Radioact, 2013, 126: 253-258 CrossRef PubMed Google Scholar

[28] Carboni M, Abney CW, Liu S, Lin W. Chem Sci, 2013, 4: 2396-2402 CrossRef Google Scholar

[29] Husnain SM, Kim HJ, Um W, Chang YY, Chang YS. Ind Eng Chem Res, 2017, 56: 9821-9830 CrossRef Google Scholar

[30] Sun Y, Wang X, Ai Y, Yu Z, Huang W, Chen C, Hayat T, Alsaedi A, Wang X. Chem Eng J, 2017, 310: 292-299 CrossRef Google Scholar

[31] Manos MJ, Kanatzidis MG. J Am Chem Soc, 2012, 134: 16441-16446 CrossRef PubMed Google Scholar

[32] Wu QY, Lan JH, Wang CZ, Xiao CL, Zhao YL, Wei YZ, Chai ZF, Shi WQ. J Phys Chem A, 2014, 118: 2149-2158 CrossRef PubMed ADS Google Scholar

[33] Wang X, Fan Q, Yu S, Chen Z, Ai Y, Sun Y, Hobiny A, Alsaedi A, Wang X. Chem Eng J, 2016, 287: 448-455 CrossRef Google Scholar

[34] Ai YJ, Liu Y, Lan WY, Jin JR, Xing JL, Zou YD, Zhao CF, Wang XK. Chem Eng J, 2018, 343: 460-466 CrossRef Google Scholar

[35] Moskaleva LV, Krüger S, Spörl A, Rösch N. Inorg Chem, 2003, 43: 4080-4090 CrossRef PubMed Google Scholar

[36] Hagberg D, Karlström G, Roos BO, Gagliardi L. J Am Chem Soc, 2005, 127: 14250-14256 CrossRef PubMed Google Scholar

[37] Shamov GA, Schreckenbach G. J Phys Chem A, 2005, 109: 10961-10974 CrossRef PubMed ADS Google Scholar

[38] Réal F, Gomes ÁSP, Visscher L, Vallet V́, Eliav E. J Phys Chem A, 2009, 113: 12504-12511 CrossRef PubMed ADS Google Scholar

[39] Kerisit S, Liu C. J Phys Chem A, 2013, 117: 6421-6432 CrossRef PubMed ADS Google Scholar

[40] Maerzke KA, Goff GS, Runde WH, Schneider WF, Maginn EJ. J Phys Chem B, 2013, 117: 10852-10868 CrossRef PubMed Google Scholar

[41] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA. Gaussian09. Wallingford: CT Press, 2009. Google Scholar

[42] Lan JH, Shi WQ, Yuan LY, Zhao YL, Li J, Chai ZF. Inorg Chem, 2011, 50: 9230-9237 CrossRef PubMed Google Scholar

[43] Wang CZ, Lan JH, Zhao YL, Chai ZF, Wei YZ, Shi WQ. Inorg Chem, 2013, 52: 196-203 CrossRef PubMed Google Scholar

[44] Wang CZ, Shi WQ, Lan JH, Zhao YL, Wei YZ, Chai ZF. Inorg Chem, 2013, 52: 10904-10911 CrossRef PubMed Google Scholar

[45] Balabanov NB, Peterson KA. J Chem Phys, 2005, 123: 064107 CrossRef PubMed ADS Google Scholar

[46] Cossi M, Rega N, Scalmani G, Barone V. J Comput Chem, 2003, 24: 669-681 CrossRef PubMed Google Scholar

[47] Cossi M, Barone V, Robb MA. J Chem Phys, 1999, 111: 5295-5302 CrossRef ADS Google Scholar

[48] Lu T, Chen F. J Comput Chem, 2012, 33: 580-592 CrossRef PubMed Google Scholar

[49] Humphrey W, Dalke A, Schulten K. J Mol Graphics, 1996, 14: 33-38 CrossRef Google Scholar

[50] Fu R, Lu T, Chen FW. Acta Phys-Chim Sin, 2014, 30: 628–639 (in Chinese) [付蓉, 卢天, 陈飞武. 物理化学学报, 2014, 30: 628–639]. Google Scholar

[51] Guo X, Li B, Ren F, Zhao G. J Atom Mol Phys, 2016, 33 (in Chinese) [郭小娟, 李斌, 任福德, 赵光明. 原子与分子物理学报, 2016, 33]. Google Scholar

[52] Shi S. J Shandong Jianzhu Univ, 2010, 25 (in Chinese) [时术华. 山东建筑大学学报, 2010, 25]. Google Scholar

[53] Murray JS, Politzer P. WIREs Comput Mol Sci, 2011, 1: 153-163 CrossRef Google Scholar

[54] Lipkowitz KB, Cundari TR, Boyd DB. Reviews in Computational Chemistry. New York: John Wiley & Sons Press, 1991. Google Scholar

  • Figure 1

    N, P and S doped graphene systems.

  • Figure 2

    Surface electrostatic potential (ESP) of N, P and S doped graphene materials. Silver and white sticks represent C and H atoms respectively; while blue, pink and yellow sticks are N, P and S atoms, respectively (color online).

  • Figure 3

    The optimized structures of G(X)/uranyl complexes (X=N, P, S). The binding sites of uranyl are U atom (a1–c1) and Oax atom (a2–c2). Bond lengths are in Å (color online).

  • Figure 4

    The optimized structures of G(NP)/uranyl and G(NS)/uranyl complexes. The binding sites of uranyl are U atom (a1–c1, a3–c3) and Oax atom (a2–c2, a4–c4). Bond lengths are in Å (color online).

  • Figure 5

    The optimized structures of G(PS)/uranyl complexes. The binding sites of uranyl are U atom (a1–c1) and Oax atom (a2–c2). Bond lengths are in Å (color online).

  • Figure 6

    The charge density difference plots of G(PS)/uranyl complexes. The yellow and cyan isosurfaces (+0.004 and −0.004 A.U., respectively) represented the region in which electron density was increased and decreased (color online).

  • Table 1   The calculated changes of total energies () during the adsorption process

    U吸附位点

    E(ad) (kcal/mol)

    O吸附位点

    E(ad) (kcal/mol)

    [G(N)···UO2]

    22.16

    [G(N)···O=U=O]

    26.65

    [G(P)···UO2]

    9.78

    [G(P)···O=U=O]

    19.33

    [G(S)···UO2]

    7.27

    [G(S)···O=U=O]

    [G(NP-para)···UO2]

    1.49

    [G(NP-para)···O=U=O]

    9.77

    [G(NP-meta)···UO2]

    15.59

    [G(NP-meta)···O=U=O]

    5.63

    [G(NP-ortho)···UO2]

    4.69

    [G(NP-ortho)···O=U=O]

    3.67

    [G(NS-para)···UO2]

    25.62

    [G(NS-para)···O=U=O]

    29.21

    [G(NS-meta)···UO2]

    22.02

    [G(NS-meta)···O=U=O]

    23.74

    [G(NS-ortho)···UO2]

    3.02

    [G(NS-ortho)···O=U=O]

    3.61

    [G(PS-para)···UO2]

    17.68

    [G(PS-para)···O=U=O]

    19.68

    [G(PS-meta)···UO2]

    35.97

    [G(PS-meta)···O=U=O]

    38.40

    [G(PS-ortho)···UO2]

    30.57

    [G(PS-ortho)···O=U=O]

    34.12

  • Table 2   O=U=O symmetrical () and anti-symmetrical stretching frequency () for N, P, S doped graphene/uranyl complexes

    U吸附位点

    vs (cm−1)

    vas (cm−1)

    O吸附位点

    vs (cm−1)

    vas (cm−1)

    [G(N)···UO2]

    852.90

    862.07

    [G(N)···O=U=O]

    840.07

    860.54

    [G(P)···UO2]

    913.23

    998.27

    [G(P)···O=U=O]

    909.90

    917.58

    [G(S)···UO2]

    930.95

    998.25

    [G(S)···O=U=O]

    [G(NP-para)···UO2]

    918.56

    997.23

    [G(NP-para)···O=U=O]

    941.08

    1000.78

    [G(NP-meta)···UO2]

    899.60

    977.46

    [G(NP-meta)···O=U=O]

    955.83

    1010.98

    [G(NP-ortho)···UO2]

    913.09

    993.62

    [G(NP-ortho)···O=U=O]

    924.59

    1018.34

    [G(NS-para)···UO2]

    841.65

    863.57

    [G(NS-para)···O=U=O]

    835.13

    859.47

    [G(NS-meta)···UO2]

    851.86

    877.42

    [G(NS-meta)···O=U=O]

    833.14

    861.09

    [G(NS-ortho)···UO2]

    934.97

    997.20

    [G(NS-ortho)···O=U=O]

    952.03

    1005.82

    [G(PS-para)···UO2]

    815.19

    837.18

    [G(PS-para)···O=U=O]

    817.95

    856.14

    [G(PS-meta)···UO2]

    858.35

    867.62

    [G(PS-meta)···O=U=O]

    813.87

    866.17

    [G(PS-ortho)···UO2]

    834.07

    868.95

    [G(PS-ortho)···O=U=O]

    810.26

    860.46

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1