logo

SCIENTIA SINICA Chimica, Volume 49, Issue 3: 564-572(2019) https://doi.org/10.1360/N032018-00147

Hydrogen bond induced molecular orbital shift in one-dimensional molecular self-assemblies on Au(111)

More info
  • ReceivedJun 19, 2018
  • AcceptedAug 30, 2018
  • PublishedOct 30, 2018

Abstract

The self-assembly of indeno[1,2-b]fluorene-6,12-dione (IFDO) absorbed on Au(111) was investigated by scanning tunneling microscopy, scanning tunneling spectroscopy, and density functional theory calculations. It was found that IFDO molecules assembled into one-dimensional molecular chains along the herringbone structures on the Au(111) surface. The lowest unoccupied molecular orbital of IFDO molecules in the assembled structures, relative to isolated molecules, shifts towards Fermi level. The degree of molecular orbital shift, varying from 0.16 to 0.32 eV, depends on the pattern and number of hydrogen bonds formed between the detected IFDO molecule and its neighboring ones. Both transient and induced polarization of neighboring IFDO molecules contribute to the total polarization energy which leads to molecular orbital shift observed by experiments. The former makes the dominant contribution, while the effect of the latter is appreciable especially for molecules composing the defect structures.


Funded by

香港研究局(N_HKUST601/15)


Supplement

补充材料

本文的补充材料见网络版http://chemcn.scichina.com. 补充材料为作者提供的原始数据, 作者对其学术质量和内容负责.


References

[1] Dimitrakopoulos CD, Malenfant PRL. Adv Mater, 2002, 14: 99-117 CrossRef Google Scholar

[2] Kahn A, Koch N, Gao W. J Polym Sci B, 2003, 41: 2529-2548 CrossRef ADS Google Scholar

[3] Kulkarni AP, Tonzola CJ, Babel A, Jenekhe SA. Chem Mater, 2004, 16: 4556-4573 CrossRef Google Scholar

[4] Koch N. ChemPhysChem, 2007, 8: 1438-1455 CrossRef PubMed Google Scholar

[5] Grätzel M. Acc Chem Res, 2009, 42: 1788-1798 CrossRef PubMed Google Scholar

[6] Facchetti A. Chem Mater, 2011, 23: 733-758 CrossRef Google Scholar

[7] Hesper R, Tjeng LH, Sawatzky GA. Europhys Lett, 1997, 40: 177-182 CrossRef ADS Google Scholar

[8] Kröger J, Jensen H, Berndt R, Rurali R, Lorente N. Chem Phys Lett, 2007, 438: 249-253 CrossRef ADS Google Scholar

[9] Kilian L, Hauschild A, Temirov R, Soubatch S, Schöll A, Bendounan A, Reinert F, Lee TL, Tautz FS, Sokolowski M, Umbach E. Phys Rev Lett, 2008, 100: 136103 CrossRef PubMed ADS Google Scholar

[10] Franke KJ, Schulze G, Henningsen N, Fernández-Torrente I, Pascual JI, Zarwell S, Rück-Braun K, Cobian M, Lorente N. Phys Rev Lett, 2008, 100: 036807 CrossRef PubMed ADS Google Scholar

[11] Gonzalez-Lakunza N, Canas-Ventura ME, Ruffieux P, Rieger R, Mullen K, Fasel R, Arnau AÃ. ChemPhysChem, 2009, 10: 2943-2946 CrossRef PubMed Google Scholar

[12] Soubatch S, Weiss C, Temirov R, Tautz FS. Phys Rev Lett, 2009, 102: 177405 CrossRef PubMed ADS Google Scholar

[13] Cochrane KA, Schiffrin A, Roussy TS, Capsoni M, Burke SA. Nat Commun, 2015, 6: 8312 CrossRef PubMed ADS Google Scholar

[14] Willenbockel M, Stadtmüller B, Schönauer K, Bocquet FC, Lüftner D, Reinisch EM, Ules T, Koller G, Kumpf C, Soubatch S, Puschnig P, Ramsey MG, Tautz FS. New J Phys, 2013, 15: 033017 CrossRef ADS Google Scholar

[15] Silinsh EA. Organic Molecular Crystals: Their Electronic States. Berlin: Springer, 1980. Google Scholar

[16] Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM. Rev Sci Instrum, 2007, 78: 013705 CrossRef PubMed ADS Google Scholar

[17] Hohenberg P, Kohn W. Phys Rev, 1964, 136: B864-B871 CrossRef ADS Google Scholar

[18] Kohn W, Sham LJ. Phys Rev, 1965, 140: A1133-A1138 CrossRef ADS Google Scholar

[19] Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169-11186 CrossRef ADS Google Scholar

[20] Kresse G, Joubert D. Phys Rev B, 1999, 59: 1758-1775 CrossRef ADS Google Scholar

[21] Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865-3868 CrossRef PubMed ADS Google Scholar

[22] Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1997, 78: 1396 CrossRef ADS Google Scholar

[23] Monkhorst HJ, Pack JD. Phys Rev B, 1976, 13: 5188-5192 CrossRef ADS Google Scholar

[24] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, J. A. Montgomery J, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.02. Wallingford CT: Gaussian Inc., 2009. Google Scholar

[25] Becke AD. J Chem Phys, 1993, 98: 5648-5652 CrossRef ADS Google Scholar

[26] Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. J Phys Chem, 1994, 98: 11623-11627 CrossRef Google Scholar

[27] Reed AE, Curtiss LA, Weinhold F. Chem Rev, 1988, 88: 899-926 CrossRef Google Scholar

[28] Glendening ED, Reed AE, Carpenter JE, Weinhold F. NBO, 3.1. Madison: University of Wisconsin, Theoretical Chemistry Institute, 1996. Google Scholar

[29] Chen W, Madhavan V, Jamneala T, Crommie MF. Phys Rev Lett, 1998, 80: 1469-1472 CrossRef ADS Google Scholar

[30] Dougherty DB, Maksymovych P, Lee J, Yates Jr. JT. Phys Rev Lett, 2006, 97: 236806 CrossRef PubMed ADS Google Scholar

[31] Kowalzik P, Atodiresei N, Gingras M, Caciuc V, Schnaebele N, Raimundo JM, Blügel S, Waser R, Karthäuser S. Phys Chem Chem Phys, 2012, 14: 1635-1641 CrossRef PubMed ADS Google Scholar

[32] Zhang YQ, Björk J, Barth JV, Klappenberger F. Nano Lett, 2016, 16: 4274-4281 CrossRef PubMed ADS Google Scholar

[33] Krygowski TM, Szatyłowicz H, Zachara JE. J Org Chem, 2005, 70: 8859-8865 CrossRef PubMed Google Scholar

[34] Lenain P, Mandado M, Mosquera RA, Bultinck P. J Phys Chem A, 2008, 112: 7898-7904 CrossRef PubMed ADS Google Scholar

  • Figure 1

    (a) STM image of one-dimensional (1D) assembly of IFDO molecules on Au(111). Inset: A molecular model of IFDO (top), and STM image showing preferred adsorption of IFDO on fcc areas of Au(111) herringbone structure (bottom). (b) High-resolution STM image of the 1D assembly of IFDO. (c) DFT-optimized models of the 1D assembly in vacuum. Imaging condition: (a) −1.0 V, 0.50 nA; inset (bottom) −1.0 V, 0.30 nA,77 K; (b) −0.6 V, 0.30 nA (color online).

  • Figure 2

    dI/dV curves of an isolated IFDO molecule (black), a molecule at the end of a assembled molecular chain (blue), a molecule in the chain (red), and bare Au(111) surface (grey). Scatter plots are original data, and the curves are smoothed data by Savitzky-Golay filter (50 points in window). Inset: STM images of (i) an isolated IFDO molecule, and (ii) an assembled molecular chain on Au(111). Imaging condition: (i) −0.5 V, 0.30 nA; (ii) 1.4 V, 0.30 nA (color online).

  • Figure 3

    (a) dI/dV curves of molecules in a straight molecular chain. Inset: STM image of a straight molecular chain. (b) dI/dV curves of molecules in defect structures. Inset: STM images of (i) a kinked molecular chain, and (ii) a rotated molecular chain. In dI/dV spectra, scatter plots are original data, and the curves are smoothed data by Savitzky-Golay filter (50 points in window). (c) The measured molecular LUMO shift (red crosses), and the calculated results of EP(T) (blue circles)and EP(T)+EP(I) (blue dots). Imaging condition: (a) 1.4 V, 0.30 nA; (b-i) −0.6 V, 0.30 nA; (b-ii) −0.6 V, 0.30 nA (color online).

  • Figure 4

    (a) Differential charge density of a straightly assembled pentamer (iso-surface density: 2.53769×10−4e). Simplified models of (b) a straight molecular chain formed by 3 molecules, (c) a kinked chain formed by 4 molecules, and (d) a rotated chain formed by 4 molecules with induced dipole moments (in eÅ) of molecules marked (color online).

  • Figure 5

    (a) Optimized models of the one-dimensional structure formed by alternately arranged IFDO molecules and formaldehydes. (b) Calculated PDOS of IFDO molecule in IFDO-formaldehyde molecular chains (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1