logo

SCIENTIA SINICA Chimica, Volume 49, Issue 3: 470-479(2019) https://doi.org/10.1360/N032018-00154

Investigation of catalytic reactions on electrode surface by scanning tunneling microscopy

More info
  • ReceivedJun 27, 2018
  • AcceptedAug 7, 2018
  • PublishedNov 20, 2018

Abstract

Understanding the mechanisms of electrocatalytic reactions is essential for development of lower cost, high-efficiency electrocatalysts for electrochemical energy conversion technology. The investigation of structures and reactions of electrocatalysts at electrode surfaces with a single molecular scale resolution benefits mechanism studies as well as catalysts development. This review summarizes recent studies on investigating the structure of electrocatalysts, distribution of catalytic active sites, and in-situ monitoring of electrocatalytic processes in reactions by scanning tunneling microscope. The challenge and future development in the field are also outlined.


Funded by

国家自然科学基金(21233010,21373236,21127901,21573252)


References

[1] Yang Y, Fei H, Ruan G, Tour JM. Adv Mater, 2015, 27: 3175-3180 CrossRef PubMed Google Scholar

[2] Wu J, Yang H. Acc Chem Res, 2013, 46: 1848-1857 CrossRef PubMed Google Scholar

[3] Wang C, Li H, Zhao J, Zhu Y, Yuan WZ, Zhang Y. Int J Hydrogen Energy, 2013, 38: 13230-13237 CrossRef Google Scholar

[4] Yan X, Tian L, He M, Chen X. Nano Lett, 2015, 15: 6015-6021 CrossRef PubMed ADS Google Scholar

[5] Wang J, Zhong H, Wang Z, Meng F, Zhang X. ACS Nano, 2016, 10: 2342-2348 CrossRef Google Scholar

[6] Vigier F, Coutanceau C, Perrard A, Belgsir EM, Lamy C. J Appl Electrochem, 2004, 34: 439-446 CrossRef Google Scholar

[7] Wang XX, Cullen DA, Pan YT, Hwang S, Wang M, Feng Z, Wang J, Engelhard MH, Zhang H, He Y, Shao Y, Su D, More KL, Spendelow JS, Wu G. Adv Mater, 2018, 30: 1706758 CrossRef PubMed Google Scholar

[8] Wang L, Pan J, Zhang Y, Cheng X, Liu L, Peng H. Adv Mater, 2018, 30: 1704378 CrossRef PubMed Google Scholar

[9] Jia X, Wang C, Zhao C, Ge Y, Wallace GG. Adv Funct Mater, 2016, 26: 1454-1462 CrossRef Google Scholar

[10] Steele BCH, Heinzel A. Nature, 2001, 414: 345-352 CrossRef PubMed Google Scholar

[11] Virca CN, Lohmolder JR, Tsang JB, Davis MM, McCormick TM. J Phys Chem A, 2018, 122: 3057-3065 CrossRef PubMed Google Scholar

[12] Jiang H, Hou Z, Luo Y. Angew Chem Int Ed, 2017, 56: 15617-15621 CrossRef PubMed Google Scholar

[13] Lin CY, Zhang D, Zhao Z, Xia Z. Adv Mater, 2018, 30: 1703646 CrossRef PubMed Google Scholar

[14] Vigil JA, Lambert TN, Duay J, Delker CJ, Beechem TE, Swartzentruber BS. ACS Appl Mater Interfaces, 2018, 10: 2040-2050 CrossRef Google Scholar

[15] Chandran P, Ghosh A, Ramaprabhu S. Sci Rep, 2018, 8: 3591 CrossRef PubMed ADS Google Scholar

[16] Sui S, Wang X, Zhou X, Su Y, Riffat S, Liu C. J Mater Chem A, 2017, 5: 1808-1825 CrossRef Google Scholar

[17] Duan D, You X, Ren W, Wei H, Liu H, Liu S. Int J Hydrogen Energy, 2015, 40: 10847-10855 CrossRef Google Scholar

[18] Sharon D, Etacheri V, Garsuch A, Afri M, Frimer AA, Aurbach D. J Phys Chem Lett, 2013, 4: 127-131 CrossRef PubMed Google Scholar

[19] Tan XH, Wang L, Zahiri B, Kohandehghan A, Karpuzov D, Lotfabad EM, Li Z, Eikerling MH, Mitlin D. ChemSusChem, 2015, 8: 361-376 CrossRef PubMed Google Scholar

[20] Ye G, Gong Y, Lin J, Li B, He Y, Pantelides ST, Zhou W, Vajtai R, Ajayan PM. Nano Lett, 2016, 16: 1097-1103 CrossRef PubMed ADS Google Scholar

[21] Tavakkoli M, Kallio T, Reynaud O, Nasibulin AG, Johans C, Sainio J, Jiang H, Kauppinen EI, Laasonen K. Angew Chem Int Ed, 2015, 54: 4535-4538 CrossRef PubMed Google Scholar

[22] Zhang L, Li N, Gao F, Hou L, Xu Z. J Am Chem Soc, 2012, 134: 11326-11329 CrossRef PubMed Google Scholar

[23] Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Nat Mater, 2011, 10: 780-786 CrossRef PubMed ADS arXiv Google Scholar

[24] Ota K, Ohgi Y, Nam KD, Matsuzawa K, Mitsushima S, Ishihara A. J Power Sources, 2011, 196: 5256-5263 CrossRef ADS Google Scholar

[25] Zhong H, Zhang H, Liu G, Liang Y, Hu J, Yi B. Electrochem Commun, 2006, 8: 707-712 CrossRef Google Scholar

[26] Cao B, Veith GM, Diaz RE, Liu J, Stach EA, Adzic RR, Khalifah PG. Angew Chem Int Ed, 2013, 52: 10753-10757 CrossRef PubMed Google Scholar

[27] Wang H, Liang Y, Li Y, Dai H. Angew Chem Int Ed, 2011, 50: 10969-10972 CrossRef PubMed Google Scholar

[28] Sidik RA, Anderson AB. J Phys Chem B, 2006, 110: 936-941 CrossRef PubMed Google Scholar

[29] Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R. Nature, 2001, 412: 169-172 CrossRef PubMed Google Scholar

[30] Roche I, Chaînet E, Chatenet M, Vondrák J. J Phys Chem C, 2007, 111: 1434-1443 CrossRef Google Scholar

[31] Oh T, Kim M, Park D, Kim J. Appl Surf Sci, 2018, 440: 627-636 CrossRef ADS Google Scholar

[32] Chen X, Chang J, Yan H, Xia D. J Phys Chem C, 2016, 120: 28912-28916 CrossRef Google Scholar

[33] Sasaki K, Naohara H, Choi YM, Cai Y, Chen WF, Liu P, Adzic RR. Nat Commun, 2012, 3: 1115 CrossRef PubMed ADS Google Scholar

[34] Hwang SJ, Yoo SJ, Jeon TY, Lee KS, Lim TH, Sung YE, Kim SK. Chem Commun, 2010, 46: 8401-8403 CrossRef PubMed Google Scholar

[35] Sun S, Jiang N, Xia D. J Phys Chem C, 2011, 115: 9511-9517 CrossRef Google Scholar

[36] Liu B, Zhang L, Xiong W, Ma M. Angew Chem Int Ed, 2016, 55: 6725-6729 CrossRef PubMed Google Scholar

[37] Liang J, Du X, Gibson C, Du XW, Qiao SZ. Adv Mater, 2013, 25: 6226-6231 CrossRef PubMed Google Scholar

[38] Subbaraman R, Danilovic N, Lopes PP, Tripkovic D, Strmcnik D, Stamenkovic VR, Markovic NM. J Phys Chem C, 2012, 116: 22231-22237 CrossRef Google Scholar

[39] Jacobse L, Huang YF, Koper MTM, Rost MJ. Nat Mater, 2018, 17: 277-282 CrossRef PubMed ADS Google Scholar

[40] Hu XM, Salmi Z, Lillethorup M, Pedersen EB, Robert M, Pedersen SU, Skrydstrup T, Daasbjerg K. Chem Commun, 2016, 52: 5864-5867 CrossRef PubMed Google Scholar

[41] Morlanés N, Takanabe K, Rodionov V. ACS Catal, 2016, 6: 3092-3095 CrossRef Google Scholar

[42] Hipps KW, Mazur U. Langmuir, 2018, 34: 3-17 CrossRef PubMed Google Scholar

[43] Sedona F, Di Marino M, Forrer D, Vittadini A, Casarin M, Cossaro A, Floreano L, Verdini A, Sambi M. Nat Mater, 2012, 11: 970-977 CrossRef PubMed ADS Google Scholar

[44] Duarte MFP, Rocha IM, Figueiredo JL, Freire C, Pereira MFR. Catal Today, 2018, 301: 17-24 CrossRef Google Scholar

[45] Liu W, Du K, Liu L, Zhang J, Zhu Z, Shao Y, Li M. Nano Energy, 2017, 38: 576-584 CrossRef Google Scholar

[46] Wurster B, Grumelli D, Hötger D, Gutzler R, Kern K. J Am Chem Soc, 2016, 138: 3623-3626 CrossRef PubMed Google Scholar

[47] Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Science, 2007, 317: 100-102 CrossRef PubMed ADS Google Scholar

[48] Pfisterer JHK, Liang Y, Schneider O, Bandarenka AS. Nature, 2017, 549: 74-77 CrossRef PubMed ADS Google Scholar

[49] Yoshimoto S, Tada A, Itaya K. J Phys Chem B, 2004, 108: 5171-5174 CrossRef Google Scholar

[50] Gu JY, Cai ZF, Wang D, Wan LJ. ACS Nano, 2016, 10: 8746-8750 CrossRef Google Scholar

[51] Cai ZF, Wang X, Wang D, Wan LJ. ChemElectroChem, 2016, 3: 2048-2051 CrossRef Google Scholar

[52] Ramaswamy N, Tylus U, Jia Q, Mukerjee S. J Am Chem Soc, 2013, 135: 15443-15449 CrossRef PubMed Google Scholar

[53] Sheng ZH, Gao HL, Bao WJ, Wang FB, Xia XH. J Mater Chem, 2011, 22: 390-395 CrossRef Google Scholar

[54] Patera LL, Bianchini F, Africh C, Dri C, Soldano G, Mariscal MM, Peressi M, Comelli G. Science, 2018, 359: 1243-1246 CrossRef PubMed ADS Google Scholar

[55] Hoshi N, Kuroda M, Ogawa T, Koga O, Hori Y. Langmuir, 2004, 20: 5066-5070 CrossRef Google Scholar

[56] Pei J, Zhou X, Wang X, Huang G. Anal Chem, 2015, 87: 2727-2733 CrossRef PubMed Google Scholar

  • Figure 1

    STM images of Pt(111) surface after different numbers of CV cycles. Numbers of cycles: (a) initial; (b) 8; (c) 31; (d) 170. Scan size: 230 nm×230 nm (color online).

  • Figure 2

    STM images of R1/R2-LD FePc/Ag(110). (a) As-deposited; (b) oxygen-dosed; (c) annealed; (d) high-resolution STM images of FePc molecules. STM images of O-HD FePc/Ag(110): (e) as-deposited; (f) oxygen-dosed. Scan size: 30 nm×30 nm (color online).

  • Figure 3

    (a) Chemical structure of metal-5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrine (M1-TPyP), and model of the extended bimetallic catalyst. (b) STM image of monolayer of the CoTPyP-Co catalyst on Au(111). Inset: High-resolution image of CoTPyP-Fe. (c) STM image of CoTPyP-Co active catalyst after OER (color online).

  • Figure 4

    STM images of MoS2 nanoparticles on Au(111). (a) Low coverage; (b) high coverage; (c) atomically resolved. (d) Polarization curves for different MoS2 samples as well as a blank sample. (e) Plot of exchange current density versus MoS2 edge length. Scan size: (a, b) 47 nm×47 nm; (c) 6 nm×6 nm (color online).

  • Figure 5

    (a, b) A scheme of tunneling current noises analysis technique. (c) STM line scans obtained over a Pt(111) surface in 0.1 M HClO4. (d) STM line scans at the surface of a Pt(111) electrode under ORR conditions. (e) Histograms characterizing the tunneling-current noise over the surface of Pt (color online).

  • Figure 6

    (a)Cyclic voltammograms of bare (black line) and FePc-modified (blue line) Au(111) electrodes in 0.1 M HClO4 saturated by oxygen. (b, c) Sequential STM images of the FePc monolayer on Au(111) in 0.1 M HClO4 saturated by oxygen at different potentials. (e, f)Cross-section profiles along the white dotted line in (b, c). Electron density distributions of FePc-O2: (d) top view and (g) side view (color online).

  • Figure 7

    (a–c) Sequential STM images of the CoTPP monolayer on Au(111) in 0.1 M HClO4 saturated by oxygen at different potential. (d–f) Sequential STM images of the CoTPP monolayer on Au(111) in 0.1 M HClO4 saturated by nitrogen at different potential (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1