logo

SCIENTIA SINICA Chimica, Volume 49, Issue 3: 455-469(2019) https://doi.org/10.1360/N032018-00159

Application of scanning probe oxidation lithography in fabrication of micro-nano devices

More info
  • ReceivedJul 5, 2018
  • AcceptedAug 7, 2018
  • PublishedDec 4, 2018

Abstract

Scanning probe lithography technology is mainly used the electrical, mechanical or thermal interaction between the atomic force microscope tip and substrate to perform imaging, manipulation and modification of the nanoscale surface. It is a simple, rapid and accurate nanostructure preparation technique. The scanning probe oxidation lithography technology has a good prospect, using highly localized water bridge formed between the tip and the sample surface to prepare micro-nano scale structures on material surface through electrochemical reactions. It has been widely used to produce nano-scale functionalized patterns and micro-nano devices. The mechanism of the patterning process and influencing factors such as voltage, tip-sample force, duration, relative humidity, and scanning speed are described in detail in this paper. Then, the work on the preparation of micro-nano devices using this technology is summarized. Finally, we discussed the advantages and problems of this technology, as well as the potential solution and development of it.


Funded by

国家自然科学基金(21572157,21773169,51633006)

科技部国家重点专项(2016YFB0401100)

天津大学北洋青年学者计划


References

[1] Lin J, Maul J, Weber N, Holfeld C, Escher M, Merkel M, Schoenhense G, Kleineberg U. Microelectron Eng, 2008, 85: 922-924 CrossRef Google Scholar

[2] Carroll KM, Lu X, Kim S, Gao Y, Kim HJ, Somnath S, Polloni L, Sordan R, King WP, Curtis JE, Riedo E. Nanoscale, 2014, 6: 1299-1304 CrossRef PubMed ADS Google Scholar

[3] Rawlings C, Wolf H, Hedrick JL, Coady DJ, Duerig U, Knoll AW. ACS Nano, 2015, 9: 6188-6195 CrossRef Google Scholar

[4] Zhang K, Fu Q, Pan N, Yu X, Liu J, Luo Y, Wang X, Yang J, Hou J. Nat Commun, 2012, 3: 1194 CrossRef PubMed ADS Google Scholar

[5] Carnally SAM, Wong LS. Nanoscale, 2014, 6: 4998-5007 CrossRef PubMed ADS Google Scholar

[6] Arruda TM, Kumar A, Jesse S, Veith GM, Tselev A, Baddorf AP, Balke N, Kalinin SV. ACS Nano, 2013, 7: 8175-8182 CrossRef PubMed Google Scholar

[7] Liu H, Hoeppener S, Schubert US. Adv Funct Mater, 2016, 26: 614-619 CrossRef Google Scholar

[8] Liu H, Hoeppener S, Schubert US. Adv Eng Mater, 2016, 18: 890-902 CrossRef Google Scholar

[9] Geng Y, Yan Y, Brousseau E, Cui X, Yu B, Zhao X, Hu Z. J Manuf Sci Eng, 2016, 138: 124501 CrossRef Google Scholar

[10] Geng Y, Yan Y, Yu B, Li J, Zhang Q, Hu Z, Zhao X. Appl Surf Sci, 2014, 313: 615-623 CrossRef Google Scholar

[11] Li L, Hirtz M, Wang W, Du C, Fuchs H, Chi L. Adv Mater, 2010, 22: 1374-1378 CrossRef PubMed Google Scholar

[12] Chen J, Sun Y, Zhong L, Shao W, Huang J, Liang F, Cui Z, Liang Z, Jiang L, Chi L. Small, 2016, 12: 5818-5825 CrossRef PubMed Google Scholar

[13] Kandemir AC, Erdem D, Ma H, Reiser A, Spolenak R. Nanotechnology, 2016, 27: 135303 CrossRef PubMed Google Scholar

[14] Hirtz M, Oikonomou A, Georgiou T, Fuchs H, Vijayaraghavan A. Nat Commun, 2013, 4: 2591 CrossRef PubMed ADS Google Scholar

[15] Kandemir AC, Ramakrishna SN, Erdem D, Courty D, Spolenak R. Compos Sci Tech, 2017, 138: 186-200 CrossRef Google Scholar

[16] Piner RD, Zhu J, Xu F, Hong S, Mirkin CA. Science, 1999, 283: 661-663 CrossRef Google Scholar

[17] Dagata JA, Schneir J, Harary HH, Evans CJ, Postek MT, Bennett J. Appl Phys Lett, 1990, 56: 2001-2003 CrossRef ADS Google Scholar

[18] Thundat T, Nagahara LA, Oden PI, Lindsay SM, George MA, Glaunsinger WS. J Vacuum Sci Tech A, 1990, 8: 3537-3541 CrossRef Google Scholar

[19] Day HC, Allee DR. Appl Phys Lett, 1993, 62: 2691-2693 CrossRef ADS Google Scholar

[20] Dago AI, Ryu YK, Garcia R. Appl Phys Lett, 2016, 109: 163103 CrossRef ADS Google Scholar

[21] Bard AJ, Mirkin MV. Scanning Electrochemical Microscopy. New York: CRC Press, 2012. Google Scholar

[22] Martaus J, Gregusová D, Cambel V, Kúdela R, Soltýs J. Ultramicroscopy, 2008, 108: 1086-1089 CrossRef PubMed Google Scholar

[23] Dagata JA, Inoue T, Itoh J, Yokoyama H. Appl Phys Lett, 1998, 73: 271-273 CrossRef ADS Google Scholar

[24] Cabrera N, Mott NF. Rep Prog Phys, 1949, 12: 163-184 CrossRef ADS Google Scholar

[25] Stiévenard D, Fontaine PA, Dubois E. Appl Phys Lett, 1997, 70: 3272-3274 CrossRef ADS Google Scholar

[26] Garcia R, Martinez RV, Martinez J. Chem Soc Rev, 2006, 35: 29-38 CrossRef PubMed Google Scholar

[27] Tello M, Garcia R, Martín-Gago JA, Martínez NF, Martín-González MS, Aballe L, Baranov A, Gregoratti L. Adv Mater, 2005, 17: 1480-1483 CrossRef Google Scholar

[28] Calleja M, Tello M, Garcı́a R. J Appl Phys, 2002, 92: 5539-5542 CrossRef ADS Google Scholar

[29] Cramer T, Zerbetto F, García R. Langmuir, 2008, 24: 6116-6120 CrossRef PubMed Google Scholar

[30] Bartošík M, Škoda D, Tomanec O, Kalousek R, Jánský P, Zlámal J, Spousta J, Dub P, Šikola T. Phys Rev B, 2009, 79: 195406 CrossRef ADS Google Scholar

[31] Gómez-Moñivas S, Sáenz JJ, Calleja M, García R. Phys Rev Lett, 2003, 91: 056101 CrossRef PubMed ADS Google Scholar

[32] Stifter T, Marti O, Bhushan B. Phys Rev B, 2000, 62: 13667-13673 CrossRef ADS Google Scholar

[33] Kyoung Ryu Y, Aitor Postigo P, Garcia F, Garcia R. Appl Phys Lett, 2014, 104: 223112 CrossRef ADS Google Scholar

[34] Kim US, Morita N, Lee DW, Jun M, Park JW. Nanotechnology, 2017, 28: 195302 CrossRef PubMed ADS Google Scholar

[35] Huang JC, Tsai CL, Tseng AA. J Chin Inst Eng, 2001, 33: 55-61 CrossRef Google Scholar

[36] Jiang Y, Guo W. Nanotechnology, 2008, 19: 345302 CrossRef PubMed ADS Google Scholar

[37] Kurra N, Prakash G, Basavaraja S, Fisher TS, Kulkarni GU, Reifenberger RG. Nanotechnology, 2011, 22: 245302 CrossRef PubMed ADS Google Scholar

[38] Daub CD, Bratko D, Leung K, Luzar A. J Phys Chem C, 2007, 111: 505-509 CrossRef Google Scholar

[39] Sacha GM, Verdaguer A, Salmeron M. J Phys Chem B, 2006, 110: 14870-14873 CrossRef PubMed Google Scholar

[40] Hu X, Hu X. Ultramicroscopy, 2005, 105: 57-61 CrossRef Google Scholar

[41] Lee DH, Kim CK, Lee JH, Chung HJ, Park BH. Carbon, 2016, 96: 223-228 CrossRef Google Scholar

[42] Marchi F, Bouchiat V, Dallaporta H, Safarov V, Tonneau D, Doppelt P. J Vac Sci Technol B, 1998, 16: 2952-2956 CrossRef ADS Google Scholar

[43] Ulrich AJ, Radadia AD. Nanotechnology, 2015, 26: 465201 CrossRef PubMed ADS Google Scholar

[44] Hu K, Wu S, Huang M, Hu X, Wang Q. Ultramicroscopy, 2012, 115: 7-13 CrossRef PubMed Google Scholar

[45] Dehzangi A, Larki F, Hutagalung SD, Goodarz Naseri M, Majlis BY, Navasery M, Hamid NA, Noor MM. PLoS One, 2013, 8: e65409 CrossRef PubMed ADS Google Scholar

[46] Shin MW, Rhee TH, Jang H. Tribol Lett, 2016, 62: 31 CrossRef Google Scholar

[47] Byun IS, Yoon D, Choi JS, Hwang I, Lee DH, Lee MJ, Kawai T, Son YW, Jia Q, Cheong H, Park BH. ACS Nano, 2011, 5: 6417-6424 CrossRef PubMed Google Scholar

[48] Abdullah AM, Hutagalung SD, Lockman Z. Int J Nanosci, 2010, 09: 251-255 CrossRef ADS Google Scholar

[49] Červenka J, Kalousek R, Bartošík M, Škoda D, Tomanec O, Šikola T. Appl Surf Sci, 2006, 253: 2373-2378 CrossRef ADS Google Scholar

[50] Garcı́a R, Calleja M, Rohrer H. J Appl Phys, 1999, 86: 1898-1903 CrossRef ADS Google Scholar

[51] Fang TH. Microelectron J, 2004, 35: 701-707 CrossRef Google Scholar

[52] Hsu HF, Lee CW. Ultramicroscopy, 2008, 108: 1076-1080 CrossRef PubMed Google Scholar

[53] Martínez RV, Martínez J, Garcia R. Nanotechnology, 2010, 21: 245301 CrossRef PubMed ADS Google Scholar

[54] Martínez RV, Losilla NS, Martinez J, Huttel Y, Garcia R. Nano Lett, 2007, 7: 1846-1850 CrossRef PubMed ADS Google Scholar

[55] Clément N, Tonneau D, Dallaporta H, Bouchiat V, Fraboulet D, Mariole D, Gautier J, Safarov V. Physica E-Low-dimensional Syst Nanostruct, 2002, 13: 999-1002 CrossRef ADS Google Scholar

[56] Martinez J, Martínez RV, Garcia R. Nano Lett, 2008, 8: 3636-3639 CrossRef PubMed ADS Google Scholar

[57] Ryu YK, Chiesa M, Garcia R. Nanotechnology, 2013, 24: 315205 CrossRef PubMed ADS Google Scholar

[58] Ionica I, Montès L, Ferraton S, Zimmermann J, Saminadayar L, Bouchiat V. Solid-State Electron, 2005, 49: 1497-1503 CrossRef ADS Google Scholar

[59] Campbell PM, Snow ES, McMarr PJ. Appl Phys Lett, 1995, 66: 1388-1390 CrossRef ADS Google Scholar

[60] Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM. Nano Lett, 2003, 3: 149-152 CrossRef ADS Google Scholar

[61] Chiesa M, Cardenas PP, Otón F, Martinez J, Mas-Torrent M, Garcia F, Alonso JC, Rovira C, Garcia R. Nano Lett, 2012, 12: 1275-1281 CrossRef PubMed ADS Google Scholar

[62] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666-669 CrossRef PubMed ADS Google Scholar

[63] Novoselov KS, Fal'ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. Nature, 2012, 490: 192-200 CrossRef PubMed ADS Google Scholar

[64] Weng L, Zhang L, Chen YP, Rokhinson LP. Appl Phys Lett, 2008, 93: 093107 CrossRef ADS arXiv Google Scholar

[65] Kurra N, Reifenberger RG, Kulkarni GU. ACS Appl Mater Interfaces, 2014, 6: 6147-6163 CrossRef PubMed Google Scholar

[66] Neubeck S, Ponomarenko LA, Freitag F, Giesbers AJM, Zeitler U, Morozov SV, Blake P, Geim AK, Novoselov KS. Small, 2010, 6: 1469-1473 CrossRef PubMed Google Scholar

[67] Puddy RK, Chua CJ, Buitelaar MR. Appl Phys Lett, 2013, 103: 183117 CrossRef ADS arXiv Google Scholar

[68] Masubuchi S, Arai M, Machida T. Nano Lett, 2011, 11: 4542-4546 CrossRef PubMed ADS Google Scholar

[69] Masubuchi S, Ono M, Yoshida K, Hirakawa K, Machida T. Appl Phys Lett, 2009, 94: 082107 CrossRef ADS arXiv Google Scholar

[70] Espinosa FM, Ryu YK, Marinov K, Dumcenco D, Kis A, Garcia R. Appl Phys Lett, 2015, 106: 103503 CrossRef ADS Google Scholar

[71] Liu X, Chen KS, Wells SA, Balla I, Zhu J, Wood JD, Hersam MC. Adv Mater, 2017, 29: 1604121 CrossRef PubMed Google Scholar

[72] Komijani Y, Csontos M, Ihn T, Ensslin K, Meir Y, Reuter D, Wieck AD. Phys Rev B, 2013, 87: 245406 CrossRef ADS arXiv Google Scholar

[73] Heine AW, Tutuc D, Zwicknagl G, Haug RJ. Phys Rev Lett, 2016, 116: 096802 CrossRef PubMed ADS arXiv Google Scholar

[74] Ubbelohde N, Fricke C, Hohls F, Haug RJ. Phys Rev B, 2013, 88: 041304 CrossRef ADS arXiv Google Scholar

[75] Lee N, Jo W, Liu C, Mény C. Nanotechnology, 2014, 25: 415302 CrossRef PubMed ADS Google Scholar

[76] Tsai JTH, Hsu CY, Hsu CH, Yang CS, Lin TY. Nano, 2015, 10: 1550028 CrossRef Google Scholar

[77] Hsu CH, Yang CS, Tsai JTH, Hsu CY. Electron Lett, 2013, 49: 554-555 CrossRef Google Scholar

[78] Jiang G, Baba A, Advincula R. Langmuir, 2007, 23: 817-825 CrossRef PubMed Google Scholar

[79] Hong LY, Lin HN. Sens Actuat A-Phys, 2015, 232: 94-98 CrossRef Google Scholar

[80] Hong LY, Lin HN. Beilstein J Nanotechnol, 2016, 7: 1044-1051 CrossRef PubMed Google Scholar

[81] Cavallini M, Hemmatian Z, Riminucci A, Prezioso M, Morandi V, Murgia M. Adv Mater, 2012, 24: 1197-1201 CrossRef PubMed Google Scholar

[82] Minne SC, Adams JD, Yaralioglu G, Manalis SR, Atalar A, Quate CF. Appl Phys Lett, 1998, 73: 1742-1744 CrossRef ADS Google Scholar

[83] Minne SC, Yaralioglu G, Manalis SR, Adams JD, Zesch J, Atalar A, Quate CF. Appl Phys Lett, 1998, 72: 2340-2342 CrossRef ADS Google Scholar

[84] Lenk S, Kaestner M, Lenk C, Rangelow IW. Microelectron Eng, 2017, 177: 19-24 CrossRef Google Scholar

[85] Payton OD, Picco L, Robert D, Raman A, Homer ME, Champneys AR, Miles MJ. Nanotechnology, 2012, 23: 205704 CrossRef PubMed ADS Google Scholar

  • Figure 1

    A scheme of oxidation scanning probe lithography [20] (color online).

  • Figure 2

    (a) A scheme of water bridge formation. (b) A schematic diagram of two-directional growth about nanoscale oxides. (c) AFM images of SiO2 formed on silicon surface. (d) Height distribution of SiO2 after HF etching [33,34] (color online).

  • Figure 3

    Equipotential distribution map near the AFM tip on natural GaAs oxide layers and GaAs substrate. (a) Relative humidity is 0%; (b) relative humidity is 70%. Measurement of capillary force in contact mode (c) and non-contact (d) mode in the presence of an electric field [30,37] (color online).

  • Figure 4

    (A) Molecular dynamics evolution of water molecules on the hydrophilic surface when the external electric field intensity is 2.0 V nm−1 (O: red; H: white). (A-a) Equilibrium state without electric field; (A-b) equilibrium state of 35 ps after applying an electric field.; (A-c) Final equilibrium state (75 ps). (B) The dependence of the oxide height h on the absolute value of the tip voltage on a n-type (0.01 Ω cm) Si substrate at different scanning speed [29,42] (color online).

  • Figure 5

    (a) Sketch of the AFM tip position for two different kinds of tip-sample interaction. (b) Typical deflection curve of a cantilever vs. z position of the sample. Relationship between aspect ratio and force in contact mode (c) and tapping mode (d) when a DC voltage of 12 V is applied to the silicon surface [42,44] (color online).

  • Figure 6

    Silicon oxide height h as a function of tip speed [25].

  • Figure 7

    (a) A schematic diagram of the bridge formed between AFM tip and the sample surface. (b) The dependence of the Kelvin radius on the relative humidity at 20 °C. (c) The thickness of silicon oxide as a function of relative humidity [30,48] (color online).

  • Figure 8

    (a) Snap-off separation as a function of pulse duration; (b) the water meniscus diameter as a function of pulse time at RH=40%, V=24 V [28].

  • Figure 9

    The relationship between lateral (a) and vertical (b) growth rate of oxide growth and pulse time [34] (color online).

  • Figure 10

    (a) AFM oxide nanolithography is used to prepare nanowires below 20 nm with different geometries. (b) A schematic for preparing silicon nanostructures by atomic force microscope oxidation lithography. (c) AFM images of silicon nanowires attached to Pt. (d) The output (left) and transfer curve (right) of silicon nanowire transistor [53,58] (color online).

  • Figure 11

    (a) Atomic force microscopy (AFM) friction image of single quantum dot prepared on monolayer graphene using AFM nano oxidation lithography. (b) Coulomb blockade of graphene quantum devices measured at T~50 mK [67].

  • Figure 12

    (a) AFM image of a ribbon device fabricated on monolayer graphene; (b) the relationship between the gate conductance G and gate voltage Vg measured at T=4.2 K, B=0 T; (c) the relationship between the gate conductance G and gate voltage Vg measured at T=4.2 K, B=9 T [69] (color online).

  • Figure 13

    (a) A schematic of oxidation lithography based on AFM; (b) the frictional image of graphene sheets after oxidation lithography at Vtip=−8.0 V, cantilever scan speed vs=50 nm/s. (c) The width of the oxidation line (wb) varies with tip bias voltage Vtip when vs is 50 nm/s. (d) (dotted line) The relationship between differential conductance G and gate voltage Vg at both ends of the original graphene at T=4.2 K. (solid line) The relationship between G and Vg in G/GO/G junction at T=4.2 K. Bias applied to the AFM cantilever Vtip=−5.5 (red), −6.0 (magenta), −6.5 (yellow), −7.0 (green), −8.0 (blue), −9.0 (purple), and −11.0 V (dark green) (from top to bottom). (e) The minimum conductivity Gmin as a function of Vtip at T=4.2 K [68] (color online).

  • Figure 14

    (a) AFM phase diagram of a MoS2 thin-film micro-nano device. The narrowest part of the channel is 200 nm wide. (b) AFM topography of oxides prepared on WSe2 wafers by scanning probe oxidation lithography. After the o-SPL patterning, the channel width of the transistor is 80 nm. (c) AFM topography after etching with deionized water. (d) The schematic, optical microscope images and AFM images of BP field effect transistor prepared on patterned BP (between electrodes A and B) and original BP (between electrodes B and C), respectively. (e) The transfer curve of BP field effect transistor [20,70,71] (color online).

  • Table 1   Half cell reactions of different samples

    样品

    阳极发生的半电池反应

    阴极发生的半电池反应

    Si

    Si+4h++2OH→SiO2+2H+

    2H+(aq)+2e→H2

    GaAs

    2GaAs+12h++6H2O→Ga2O3+As2O3+12H+

    SiC

    SiC+8h++4OH→SiO2+4H++CO2

    MoS2

    2MoS2+9O2+4H2O→2MoS3+4H2SO4

    WSe2

    WSe2+9H2O+14h+→WO3+2SeO32−+18H+

    R--CH3

    R--CH3+2OH+2h+→RCOOH+2H2

    任意金属表面

    M+nH2O→MOn+2nH++2ne

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号