logo

SCIENTIA SINICA Chimica, Volume 49 , Issue 3 : 525-535(2019) https://doi.org/10.1360/N032018-00160

On-surface synthesis of carbon nanostructures by dehalogenative and dehydrogenative homocoupling reactions

More info
  • ReceivedJul 5, 2018
  • AcceptedAug 7, 2018
  • PublishedOct 31, 2018

Abstract

Because of its diversity in nature, research on carbon materials has always been a hot topic. With the continuous development of nanotechnology, especially the application of scanning probe microscopy (SPM), surface chemistry has become one of the hot research areas. Recently, many researchers, including our group, have used scanning probe microscopy to fabricate a variety of novel carbon nanostructures through surface activation of hydrocarbons and carbon-halogen bonds under ultra-high vacuum (UHV) conditions. In this review, combined with the recent research work of this group, we focus on the study of the formation of carbon nanostructures on the metal surface through the activation of hydrocarbons and carbon halides, and explore the reactivity of the precursor molecules on the surface.


Funded by

国家自然科学基金(21473123,21622307)


References

[1] Friedman SH. Nat Chem, 2012, 4: 426 CrossRef PubMed ADS Google Scholar

[2] Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ, Elías AL, Muñoz-Sandoval E, Cano-Márquez AG, Charlier JC. Nano Today, 2010, 5: 351-372 CrossRef Google Scholar

[3] Heimann RB, Evsvukov SE, Koga Y. Carbon, 1997, 35: 1654-1658 CrossRef Google Scholar

[4] Enyashin AN, Ivanovskii AL. Phys Status Solidi B, 2011, 248: 1879-1883 CrossRef ADS Google Scholar

[5] May PW. Philos Trans R Soc A-Math Phys Eng Sci, 2000, 358: 473-495 CrossRef ADS Google Scholar

[6] Iijima S. Nature, 1991, 354: 56-58 CrossRef ADS Google Scholar

[7] Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. Nature, 1985, 318: 162-163 CrossRef ADS Google Scholar

[8] Meregalli V, Parrinello M. Appl Phys A, 2001, 72: 143-146 CrossRef Google Scholar

[9] Zhang LL, Zhou R, Zhao XS. J Mater Chem, 2010, 20: 5983-5992 CrossRef Google Scholar

[10] Mirkin CA, Brett Caldwell W. Tetrahedron, 1996, 52: 5113-5130 CrossRef Google Scholar

[11] Chen YH, Liu HB, Li YL. Chin Sci Bull, 2016, 61: 2901–2912 (in Chinese) [陈彦焕, 刘辉彪, 李玉良. 科学通报, 2016, 61: 2901–2912]. Google Scholar

[12] Huang CS, Li YL. Acta Phys-Chim Sin, 2016, 32: 1314–1329 (in Chinese) [黄长水, 李玉良. 物理化学学报, 2016, 32 : 1314–1329]. Google Scholar

[13] Narita N, Nagai S, Suzuki S, Nakao K. Phys Rev B, 1998, 58: 11009-11014 CrossRef ADS Google Scholar

[14] Baughman RH, Eckhardt H, Kertesz M. J Chem Phys, 1987, 87: 6687-6699 CrossRef ADS Google Scholar

[15] Alkorta I, Elguero J. Struct Chem, 2005, 16: 77-79 CrossRef Google Scholar

[16] Januszewski JA, Tykwinski RR. Chem Soc Rev, 2014, 43: 3184-3203 CrossRef PubMed Google Scholar

[17] Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer JC, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin ZJ, Novotny L, Ayala P, Pichler T. Nat Mater, 2016, 15: 634-639 CrossRef PubMed ADS arXiv Google Scholar

[18] Xi J, Wang D, Shuai Z. WIREs Comput Mol Sci, 2015, 5: 215-227 CrossRef Google Scholar

[19] Yao S, Zhou C, Wu J, Li J, Han B, Cheng H. Int J Quantum Chem, 2008, 108: 1565-1571 CrossRef ADS Google Scholar

[20] Crljen Z, Baranović G. Phys Rev Lett, 2007, 98: 1168011-1168014 CrossRef PubMed ADS Google Scholar

[21] Liu M, Artyukhov VI, Lee H, Xu F, Yakobson BI. ACS Nano, 2013, 7: 10075-10082 CrossRef PubMed Google Scholar

[22] Bartels L, Meyer G, Rieder KH. Phys Rev Lett, 1997, 79: 697-700 CrossRef ADS Google Scholar

[23] Dong L, Gao Z’, Lin N. Prog Surf Sci, 2016, 91: 101-135 CrossRef ADS Google Scholar

[24] Cai L, Sun Q, Bao M, Ma H, Yuan C, Xu W. ACS Nano, 2017, 11: 3727-3732 CrossRef Google Scholar

[25] Sun Q, Cai L, Ma H, Yuan C, Xu W. Chem Commun, 2015, 51: 14164-14166 CrossRef PubMed Google Scholar

[26] Xie L, Zhang C, Ding Y, Xu W. Angew Chem Int Ed, 2017, 56: 5077-5081 CrossRef PubMed Google Scholar

[27] Hla SW. J Vac Sci Technol B, 2005, 23: 1351-1360 CrossRef ADS Google Scholar

[28] Held PA, Fuchs H, Studer A. Chem Eur J, 2017, 23: 5874-5892 CrossRef PubMed Google Scholar

[29] Shen Q, Gao HY, Fuchs H. Nano Today, 2017, 13: 77-96 CrossRef Google Scholar

[30] Sun Q, Zhang R, Qiu J, Liu R, Xu W. Adv Mater, 2018, 30: 1705630 CrossRef PubMed Google Scholar

[31] Sanchez-Valencia JR, Dienel T, Gröning O, Shorubalko I, Mueller A, Jansen M, Amsharov K, Ruffieux P, Fasel R. Nature, 2014, 512: 61-64 CrossRef PubMed ADS Google Scholar

[32] Otero G, Biddau G, Sánchez-Sánchez C, Caillard R, López MF, Rogero C, Palomares FJ, Cabello N, Basanta MA, Ortega J, Méndez J, Echavarren AM, Pérez R, Gómez-Lor B, Martín-Gago JA. Nature, 2008, 454: 865-868 CrossRef PubMed ADS Google Scholar

[33] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R. Nature, 2010, 466: 470-473 CrossRef PubMed ADS Google Scholar

[34] Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli CA, Passerone D, Dumslaff T, Feng X, Müllen K, Fasel R. Nature, 2016, 531: 489-492 CrossRef PubMed ADS arXiv Google Scholar

[35] Hla SW, Bartels L, Meyer G, Rieder KH. Phys Rev Lett, 2000, 85: 2777-2780 CrossRef PubMed ADS Google Scholar

[36] Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S. Nat Nanotech, 2007, 2: 687-691 CrossRef PubMed ADS Google Scholar

[37] Di Giovannantonio M, El Garah M, Lipton-Duffin J, Meunier V, Cardenas L, Fagot Revurat Y, Cossaro A, Verdini A, Perepichka DF, Rosei F, Contini G. ACS Nano, 2013, 7: 8190-8198 CrossRef PubMed Google Scholar

[38] Fan Q, Wang C, Han Y, Zhu J, Hieringer W, Kuttner J, Hilt G, Gottfried JM. Angew Chem Int Ed, 2013, 52: 4668-4672 CrossRef PubMed Google Scholar

[39] Chung KH, Koo BG, Kim H, Yoon JK, Kim JH, Kwon YK, Kahng SJ. Phys Chem Chem Phys, 2012, 14: 7304-7308 CrossRef PubMed ADS Google Scholar

[40] Ammon M, Sander T, Maier S. J Am Chem Soc, 2017, 139: 12976-12984 CrossRef PubMed Google Scholar

[41] Pham TA, Tran BV, Nguyen MT, Stöhr M. Small, 2017, 13: 1603675 CrossRef PubMed Google Scholar

[42] Eichhorn J, Nieckarz D, Ochs O, Samanta D, Schmittel M, Szabelski PJ, Lackinger M. ACS Nano, 2014, 8: 7880-7889 CrossRef PubMed Google Scholar

[43] Park J, Kim KY, Chung KH, Yoon JK, Kim H, Han S, Kahng SJ. J Phys Chem C, 2011, 115: 14834-14838 CrossRef Google Scholar

[44] Saywell A, Greń W, Franc G, Gourdon A, Bouju X, Grill L. J Phys Chem C, 2014, 118: 1719-1728 CrossRef Google Scholar

[45] Shen Q, He JH, Zhang JL, Wu K, Xu GQ, Wee ATS, Chen W. J Chem Phys, 2015, 142: 101902 CrossRef PubMed ADS Google Scholar

[46] Sun Q, Cai L, Ma H, Yuan C, Xu W. Chem Commun, 2016, 52: 6009-6012 CrossRef PubMed Google Scholar

[47] Sun Q, Tran BV, Cai L, Ma H, Yu X, Yuan C, Stöhr M, Xu W. Angew Chem Int Ed, 2017, 56: 12165-12169 CrossRef PubMed Google Scholar

[48] Sun Q, Cai L, Ding Y, Ma H, Yuan C, Xu W. Phys Chem Chem Phys, 2016, 18: 2730-2735 CrossRef PubMed ADS Google Scholar

[49] Sun Q, Yu X, Bao M, Liu M, Pan J, Zha Z, Cai L, Ma H, Yuan C, Qiu X, Xu W. Angew Chem Int Ed, 2018, 57: 4035-4038 CrossRef PubMed Google Scholar

[50] Zhang YQ, Kepčija N, Kleinschrodt M, Diller K, Fischer S, Papageorgiou AC, Allegretti F, Björk J, Klyatskaya S, Klappenberger F, Ruben M, Barth JV. Nat Commun, 2012, 3: 1286 CrossRef PubMed ADS Google Scholar

[51] Cirera B, Zhang YQ, Björk J, Klyatskaya S, Chen Z, Ruben M, Barth JV, Klappenberger F. Nano Lett, 2014, 14: 1891-1897 CrossRef PubMed ADS Google Scholar

[52] Gao HY, Wagner H, Zhong D, Franke JH, Studer A, Fuchs H. Angew Chem Int Ed, 2013, 52: 4024-4028 CrossRef PubMed Google Scholar

[53] Klappenberger F, Hellwig R, Du P, Paintner T, Uphoff M, Zhang L, Lin T, Moghanaki BA, Paszkiewicz M, Vobornik I, Fujii J, Fuhr O, Zhang YQ, Allegretti F, Ruben M, Barth JV. Small, 2018, 14: 1704321 CrossRef PubMed Google Scholar

[54] Liu J, Chen Q, Xiao L, Shang J, Zhou X, Zhang Y, Wang Y, Shao X, Li J, Chen W, Xu GQ, Tang H, Zhao D, Wu K. ACS Nano, 2015, 9: 6305-6314 CrossRef Google Scholar

[55] Sun Q, Cai L, Ma H, Yuan C, Xu W. ACS Nano, 2016, 10: 7023-7030 CrossRef Google Scholar

[56] Zhang H, Lin H, Sun K, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong D, Li Y, Müllen K, Fuchs H, Chi L. J Am Chem Soc, 2015, 137: 4022-4025 CrossRef PubMed Google Scholar

[57] Wang T, Lv H, Fan Q, Feng L, Wu X, Zhu J. Angew Chem, 2017, 129: 4840-4844 CrossRef Google Scholar

[58] Sun Q, Cai L, Wang S, Widmer R, Ju H, Zhu J, Li L, He Y, Ruffieux P, Fasel R, Xu W. J Am Chem Soc, 2016, 138: 1106-1109 CrossRef PubMed Google Scholar

[59] Sun Q, Zhang C, Kong H, Tan Q, Xu W. Chem Commun, 2014, 50: 11825-11828 CrossRef PubMed Google Scholar

[60] Sun Q, Cai L, Ding Y, Xie L, Zhang C, Tan Q, Xu W. Angew Chem Int Ed, 2015, 54: 4549-4552 CrossRef PubMed Google Scholar

[61] Zhong D, Franke JH, Podiyanachari SK, Blömker T, Zhang H, Kehr G, Erker G, Fuchs H, Chi L. Science, 2011, 334: 213-216 CrossRef PubMed ADS Google Scholar

[62] Sun K, Chen A, Liu M, Zhang H, Duan R, Ji P, Li L, Li Q, Li C, Zhong D, Müllen K, Chi L. J Am Chem Soc, 2018, 140: 4820-4825 CrossRef PubMed Google Scholar

[63] Cai L, Sun Q, Zhang C, Ding Y, Xu W. Chem Eur J, 2016, 22: 1918-1921 CrossRef PubMed Google Scholar

  • Figure 1

    Classification of halogenated and hydrogenated functional groups of different hybrid carbon atoms (color online).

  • Figure 2

    Structural formulas and corresponding STM images of different kinds of brominated porphyrin derivate molecules [36] (color online).

  • Figure 3

    (a) Schematic diagram of metal intermediates formed by deposition of BVBP molecules on Cu(110) surface at RT and covalent products after annealing. (b, c) The corresponding STM images of organometallic intermediates and covalent products. (d, e) The corresponding DFT optimized model of the organometallic intermediate and the cis-diene product [46] (color online).

  • Figure 4

    (a) Scheme of reaction procedure of bBVBP molecules on Au(111) surface. (b, c, d, f) STM images of cis- and trans- cumulene products. (e, g) nc-AFM images of corresponding structures [47] (color online).

  • Figure 5

    (a) Scheme of procedure of on-surface Wurtz reaction. (b–g) STM images of debrominated intermediates, final products. Corresponding DFT optimized model and simulated STM images on Cu(110), Ag(110), Au(111) surfaces, respectively [48] (color online).

  • Figure 6

    On Au(111) surface, formation of 0D, 1D and 2D structures from (a, b) single, (c, d) double, (e, f) triple substituted tribromomethyl groups respectively, and the corresponding STM images [49] (color online).

  • Figure 7

    (a) Scheme of reaction of three alkynyl bromide groups on Au(111) surface. STM images of (b) organometallic intermediates and (c) final products [55] (color online).

  • Figure 8

    (a, b) Large-scale nc-AFM frequency shift image and simultaneous current image. (c) Equally scaled high-resolution nc-AFM frequency shift image, current image, DFT-optimized model, and STM simulation and line-scan profile of a single metalated carbyne chain on Cu(110) [58] (color online).

  • Figure 9

    (a) STM image showing the formation of chain-like structures with branches after annealing the 4Ph-covered Cu(110) surface at 500 K. (b--f) The equally-scaled optimized structural models and the DFT-based STM image simulations of the typical structural motifs within the chain structures [59] (color online).

  • Figure 10

    (a) Large-scale and (b) close-up STM images showing the adsorption and arrangement of VBP molecules on Cu(110) at RT. (c) Large-scale and (d) close-up STM images showing dimerization of VBP molecules on Cu(110) at 425 K [60] (color online).

  • Figure 11

    (a, b) Self-assembling structures of DBP molecules on Cu(111) surface. STM images after annealing the sample to 400 K (c, d) and 430 K (e–g) [63] (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号