logo

SCIENTIA SINICA Chimica, Volume 49 , Issue 3 : 500-515(2019) https://doi.org/10.1360/N032018-00163

Regulation mechanism of nanobiointerfaces in amyloid peptide assembly and aggregation structures

More info
  • ReceivedJun 19, 2018
  • AcceptedAug 30, 2018
  • PublishedOct 20, 2018

Abstract

In this review, we try to reflect the recent progress on assembly structures, aggregation behaviors and the cytotoxicity of beta amyloid (Aβ) peptides, which are closely related to the pathogenesis of Alzheimer’s disease (AD). Based on these studies, the progress on the regulation mechanism of various nanobiointerfaces in amyloid peptide assembly and aggregation structures is reviewed and discussed, especially the interaction patterns and mechanisms between Aβ peptides and nanomaterials on the molecule level. These progresses could help to deepen the insights of the complex interactions between amyloid peptides and modulators. To study Aβ peptide conformation, assembly mechanism and aggregation process, developing new efficient nanobiointerface modulators is of great importance for the therapeutic strategy evolution.


References

[1] Whitesides GM, Mathias JP, Seto CT. Science, 1991, 254: 1312-1319 CrossRef ADS Google Scholar

[2] Lorenzo A, Yankner BA. Proc Natl Acad Sci USA, 1994, 91: 12243-12247 CrossRef ADS Google Scholar

[3] Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, Schubert D, Riek R. Proc Natl Acad Sci USA, 2005, 102: 17342-17347 CrossRef PubMed ADS Google Scholar

[4] Petkova AT, Buntkowsky G, Dyda F, Leapman RD, Yau WM, Tycko R. J Mol Biol, 2004, 335: 247-260 CrossRef Google Scholar

[5] Nelson R, Sawaya MR, Balbirnie M, Madsen AØ, Riekel C, Grothe R, Eisenberg D. Nature, 2005, 435: 773-778 CrossRef PubMed ADS Google Scholar

[6] Prusiner SB, Lipton HL. Crit Rev Biochem Mol Biol, 1991, 26: 397-438 CrossRef PubMed Google Scholar

[7] Prusiner SB. Science, 1991, 252: 1515-1522 CrossRef ADS Google Scholar

[8] Prusiner SB. Proc Natl Acad Sci USA, 1998, 95: 13363-13383 CrossRef ADS Google Scholar

[9] Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJW, McFarlane HT, Madsen AØ, Riekel C, Eisenberg D. Nature, 2007, 447: 453-457 CrossRef PubMed ADS Google Scholar

[10] Betsholtz C, Svensson V, Rorsman F, Engström U, Westermark GT, Wilander E, Johnson K, Westermark P. Exp Cell Res, 1989, 183: 484-493 CrossRef Google Scholar

[11] Johnson RE, Nahmias AJ, Magder LS, Lee FK, Brooks CA, Snowden CB. N Engl J Med, 1989, 321: 7-12 CrossRef PubMed Google Scholar

[12] Nilsson KPR, Aslund A, Berg I, Nyström S, Konradsson P, Herland A, Inganäs O, Stabo-Eeg F, Lindgren M, Westermark GT, Lannfelt L, Nilsson LNG, Hammarström P. ACS Chem Biol, 2007, 2: 553-560 CrossRef PubMed Google Scholar

[13] Westermark P, Wernstedt C, Obrien T D, Hayden D W, Johnson K H. Am J Pathol,1987, 127: 414–417. Google Scholar

[14] Westermark P, Wernstedt C, Wilander E, Hayden DW, O'Brien TD, Johnson KH. Proc Natl Acad Sci USA, 1987, 84: 3881-3885 CrossRef ADS Google Scholar

[15] Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. J Neurol Sci, 1973, 20: 415-455 CrossRef Google Scholar

[16] Conway KA, Harper JD, Lansbury PT. Biochemistry, 2000, 39: 2552-2563 CrossRef Google Scholar

[17] Ravikumar B, Duden R, Rubinsztein DC. Human Mol Genets, 2002, 11: 1107-1117 CrossRef Google Scholar

[18] De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL. J Biol Chem, 2007, 282: 11590-11601 CrossRef PubMed Google Scholar

[19] Klein WL. Neurochem Int, 2002, 41: 345-352 CrossRef Google Scholar

[20] Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL. Proc Natl Acad Sci USA, 1998, 95: 6448-6453 CrossRef ADS Google Scholar

[21] Mizoroki T, Meshitsuka S, Maeda S, Murayama M, Sahara N, Takashima A. J Alzheimer’s Disease, 2007, 11: 419-427 CrossRef Google Scholar

[22] Glenner GG, Wong CW. Biochem Biophys Res Commun, 1984, 120: 885-890 CrossRef Google Scholar

[23] Robertson ED, Mucke L. Science, 2006, 314: 781-784 CrossRef PubMed ADS Google Scholar

[24] Goedert M, Spillantini MG. Science, 2006, 314: 777-781 CrossRef PubMed ADS Google Scholar

[25] Brody DL, Magnoni S, Schwetye KE, Spinner ML, Esparza TJ, Stocchetti N, Zipfel GJ, Holtzman DM. Science, 2008, 321: 1221-1224 CrossRef PubMed ADS Google Scholar

[26] Gestwicki JE, Crabtree GR, Graef IA. Science, 2004, 306: 865-869 CrossRef PubMed ADS Google Scholar

[27] Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R. Proc Natl Acad Sci USA, 2002, 99: 16742-16747 CrossRef PubMed ADS Google Scholar

[28] Ma X, Liu L, Mao X, Niu L, Deng K, Wu W, Li Y, Yang Y, Wang C. J Mol Biol, 2009, 388: 894-901 CrossRef PubMed Google Scholar

[29] Barrow CJ, Yasuda A, Kenny PTM, Zagorski MG. J Mol Biol, 1992, 225: 1075-1093 CrossRef Google Scholar

[30] Ono K, Naiki H, Yamada M. Curr Pharm Design, 2006, 12: 4357-4375 CrossRef Google Scholar

[31] Blazer LL, Neubig RR. Neuropsychopharmacology, 2009, 34: 126-141 CrossRef PubMed Google Scholar

[32] Frid P, Anisimov SV, Popovic N. Brain Res Rev, 2007, 53: 135-160 CrossRef PubMed Google Scholar

[33] Irie K, Murakami K, Masuda Y, Morimoto A, Ohigashi H, Ohashi R, Takegoshi K, Nagao M, Shimizu T, Shirasawa T. J Biosci Bioeng, 2005, 99: 437-447 CrossRef PubMed Google Scholar

[34] Klunk WE, Debnath ML, Pettegrew JW. Neurobiol Aging, 1994, 15: 691-698 CrossRef Google Scholar

[35] Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Exp Neurol, 2004, 189: 380-392 CrossRef PubMed Google Scholar

[36] Arimon M, Díez-Pérez I, Kogan MJ, Durany N, Giralt E, Sanz F, Fernàndez-Busquets X. FASEB J, 2005, 19: 1344-1346 CrossRef PubMed Google Scholar

[37] Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R. Proc Natl Acad Sci USA, 2005, 102: 10427-10432 CrossRef PubMed ADS Google Scholar

[38] Losic D, Martin LL, Aguilar MI, Small DH. Biopolymers, 2006, 84: 519-526 CrossRef PubMed Google Scholar

[39] Arce FT, Jang H, Ramachandran S, Landon PB, Nussinov R, Lal R. Soft Matter, 2011, 7: 5267-5273 CrossRef PubMed ADS Google Scholar

[40] Oh JH, Choi S, Shin J, Park JS. Biochem Biophys Res Commun, 2016, 477: 614-619 CrossRef PubMed Google Scholar

[41] Li H, Luo Y, Derreumaux P, Wei G. Biophys J, 2011, 101: 2267-2276 CrossRef PubMed ADS Google Scholar

[42] Habchi J, Chia S, Limbocker R, Mannini B, Ahn M, Perni M, Hansson O, Arosio P, Kumita JR, Challa PK, Cohen SIA, Linse S, Dobson CM, Knowles TPJ, Vendruscolo M. Proc Natl Acad Sci USA, 2017, 114: E200-E208 CrossRef PubMed Google Scholar

[43] Chen Y, Chen Z, Sun Y, Lei J, Wei G. Nanoscale, 2018, 10: 8989-8997 CrossRef PubMed Google Scholar

[44] Tahmasebinia F, Emadi S. Biometals, 2017, 30: 285-293 CrossRef PubMed Google Scholar

[45] Yoo SI, Yang M, Brender JR, Subramanian V, Sun K, Joo NE, Jeong SH, Ramamoorthy A, Kotov NA. Angew Chem Int Ed, 2011, 50: 5110-5115 CrossRef PubMed Google Scholar

[46] Xie L, Luo Y, Lin D, Xi W, Yang X, Wei G. Nanoscale, 2014, 6: 9752-9762 CrossRef PubMed ADS Google Scholar

[47] Liao YH, Chang YJ, Yoshiike Y, Chang YC, Chen YR. Small, 2012, 8: 3631-3639 CrossRef PubMed Google Scholar

[48] Niu L, Liu L, Xi W, Han Q, Li Q, Yu Y, Huang Q, Qu F, Xu M, Li Y, Du H, Yang R, Cramer J, Gothelf KV, Dong M, Besenbacher F, Zeng Q, Wang C, Wei G, Yang Y. ACS Nano, 2016, 10: 4143-4153 CrossRef Google Scholar

[49] Triulzi RC, Dai Q, Zou J, Leblanc RM, Gu Q, Orbulescu J, Huo Q. Colloids Surfs B, 2008, 63: 200-208 CrossRef PubMed Google Scholar

[50] Wu W, Lei P, Liu Q, Hu J, Gunn AP, Chen M, Rui Y, Su X, Xie Z, Zhao YF, Bush AI, Li Y. J Biol Chem, 2008, 283: 31657-31664 CrossRef PubMed Google Scholar

[51] Li M, Yang X, Ren J, Qu K, Qu X. Adv Mater, 2012, 24: 1722-1728 CrossRef PubMed Google Scholar

[52] Guan Y, Li M, Dong K, Gao N, Ren J, Zheng Y, Qu X. Biomaterials, 2016, 98: 92-102 CrossRef PubMed Google Scholar

[53] Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M. Nat Mater, 2009, 8: 543-557 CrossRef PubMed ADS Google Scholar

[54] Wang J, Cao Y, Li Q, Liu L, Dong M. Chem Eur J, 2015, 21: 9632-9637 CrossRef PubMed Google Scholar

[55] Elwing H, Nilsson B, Svensson KE, Askendahl A, Nilsson UR, Lundström I. J Colloid Interface Sci, 1988, 125: 139-145 CrossRef ADS Google Scholar

[56] Latour RA, Rini CJ. J Biomed Mater Res, 2002, 60: 564-577 CrossRef PubMed Google Scholar

[57] Basalyga DM, Latour RA. J Biomed Mater Res, 2003, 64A: 120-130 CrossRef PubMed Google Scholar

[58] Vannoy CH, Xu J, Leblanc RM. J Phys Chem C, 2010, 114: 766-773 CrossRef Google Scholar

[59] Zhang LY, Zheng HZ, Long YJ, Huang CZ, Hao JY, Zhou DB. Talanta, 2011, 83: 1716-1720 CrossRef PubMed Google Scholar

[60] Gupta S, Babu P, Surolia A. Biomaterials, 2010, 31: 6809-6822 CrossRef PubMed Google Scholar

[61] Ji X, Naistat D, Li C, Orbulesco J, Leblanc RM. Colloids Surfs B, 2006, 50: 104-111 CrossRef PubMed Google Scholar

[62] Xiao L, Zhao D, Chan WH, Choi MMF, Li HW. Biomaterials, 2010, 31: 91-98 CrossRef PubMed Google Scholar

[63] Liu Y, Xu LP, Dai W, Dong H, Wen Y, Zhang X. Nanoscale, 2015, 7: 19060-19065 CrossRef PubMed ADS Google Scholar

[64] Liu Y, Xu LP, Wang Q, Yang B, Zhang X. ACS Chem Neurosci, 2018, 9: 817-823 CrossRef PubMed Google Scholar

[65] Liu L, Niu L, Xu M, Han Q, Duan H, Dong M, Besenbacher F, Wang C, Yang Y. ACS Nano, 2014, 8: 9503-9510 CrossRef PubMed Google Scholar

[66] Liu L, Zhang L, Mao X, Niu L, Yang Y, Wang C. Nano Lett, 2009, 9: 4066-4072 CrossRef PubMed ADS Google Scholar

[67] Niu L, Liu L, Xu M, Cramer J, Gothelf KV, Dong M, Besenbacher F, Zeng Q, Yang Y, Wang C. Chem Commun, 2014, 50: 8923-8926 CrossRef PubMed Google Scholar

[68] Brown CL, Aksay IA, Saville DA, Hecht MH. J Am Chem Soc, 2002, 124: 6846-6848 CrossRef Google Scholar

[69] Mao X, Wang Y, Liu L, Niu L, Yang Y, Wang C. Langmuir, 2009, 25: 8849-8853 CrossRef PubMed Google Scholar

[70] Choi I, Lee LP. ACS Nano, 2013, 7: 6268-6277 CrossRef PubMed Google Scholar

[71] Gao N, Sun H, Dong K, Ren J, Qu X. Chem Eur J, 2015, 21: 829-835 CrossRef PubMed Google Scholar

[72] Gao G, Zhang M, Gong D, Chen R, Hu X, Sun T. Nanoscale, 2017, 9: 4107-4113 CrossRef PubMed Google Scholar

[73] Song M, Sun Y, Luo Y, Zhu Y, Liu Y, Li H. Int J Mol Sci, 2018, 19: 1815 CrossRef PubMed Google Scholar

[74] Ma Q, Wei G, Yang X. Nanoscale, 2013, 5: 10397-10403 CrossRef PubMed ADS Google Scholar

[75] Brambilla D, Le Droumaguet B, Nicolas J, Hashemi SH, Wu LP, Moghimi SM, Couvreur P, Andrieux K. Nanomed-Nanotechnol Biol Med, 2011, 7: 521-540 CrossRef PubMed Google Scholar

[76] Busquets MA, Sabaté R, Estelrich J. Nanoscale Res Lett, 2014, 9: 538 CrossRef PubMed Google Scholar

[77] Skaat H, Shafir G, Margel S. J Nanopart Res, 2011, 13: 3521-3534 CrossRef ADS Google Scholar

[78] Mahmoudi M, Quinlan-Pluck F, Monopoli MP, Sheibani S, Vali H, Dawson KA, Lynch I. ACS Chem Neurosci, 2013, 4: 475-485 CrossRef PubMed Google Scholar

[79] Loynachan CN, Romero G, Christiansen MG, Chen R, Ellison R, O'Malley TT, Froriep UP, Walsh DM, Anikeeva P. Adv Healthc Mater, 2015, 4: 2100-2109 CrossRef PubMed Google Scholar

[80] Fu Z, Luo Y, Derreumaux P, Wei G. Biophys J, 2009, 97: 1795-1803 CrossRef PubMed ADS Google Scholar

[81] Jana AK, Sengupta N. Biophys J, 2012, 102: 1889-1896 CrossRef PubMed ADS Google Scholar

[82] Li X, Chen W, Zhan Q, Dai L, Sowards L, Pender M, Naik RR. J Phys Chem B, 2006, 110: 12621-12625 CrossRef PubMed Google Scholar

[83] Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y, Zhou R, Zhao Y, Chai Z, Chen C. Proc Natl Acad Sci USA, 2011, 108: 16968-16973 CrossRef PubMed ADS Google Scholar

[84] Shin J, Lee S, Cha M. MedChemComm, 2017, 8: 625-632 CrossRef PubMed Google Scholar

[85] Ruiz ON, Fernando KAS, Wang B, Brown NA, Luo PG, McNamara ND, Vangsness M, Sun YP, Bunker CE. ACS Nano, 2011, 5: 8100-8107 CrossRef PubMed Google Scholar

[86] Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H. Toxicol Lett, 2011, 200: 201-210 CrossRef PubMed Google Scholar

[87] Mahmoudi M, Akhavan O, Ghavami M, Rezaee F, Ghiasi SMA. Nanoscale, 2012, 4: 7322-7325 CrossRef PubMed ADS Google Scholar

[88] Li M, Guan Y, Chen Z, Gao N, Ren J, Dong K, Qu X. Nano Res, 2016, 9: 2411-2423 CrossRef Google Scholar

[89] Wang J, Liu L, Ge D, Zhang H, Feng Y, Zhang Y, Chen M, Dong M. Chem Eur J, 2018, 24: 3397-3402 CrossRef PubMed Google Scholar

[90] Klajnert B, Wasiak T, Ionov M, Fernandez-Villamarin M, Sousa-Herves A, Correa J, Riguera R, Fernandez-Megia E. Nanomed-Nanotechnol Biol Med, 2012, 8: 1372-1378 CrossRef PubMed Google Scholar

[91] Patel D, Henry J, Good T. Biochim Biophys Acta, 2006, 1760: 1802-1809 CrossRef PubMed Google Scholar

[92] Patel DA, Henry JE, Good TA. Brain Res, 2007, 1161: 95-105 CrossRef PubMed Google Scholar

[93] Cabaleiro-Lago C, Lynch I, Dawson KA, Linse S. Langmuir, 2010, 26: 3453-3461 CrossRef PubMed Google Scholar

[94] Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I, Lindman S, Minogue AM, Thulin E, Walsh DM, Dawson KA, Linse S. J Am Chem Soc, 2008, 130: 15437-15443 CrossRef PubMed Google Scholar

[95] Liu H, Yu L, Dong X, Sun Y. J Colloid Interface Sci, 2017, 491: 305-312 CrossRef PubMed ADS Google Scholar

[96] Pai AS, Rubinstein I, Onyüksel H. Peptides, 2006, 27: 2858-2866 CrossRef PubMed Google Scholar

[97] Gobbi M, Re F, Canovi M, Beeg M, Gregori M, Sesana S, Sonnino S, Brogioli D, Musicanti C, Gasco P, Salmona M, Masserini ME. Biomaterials, 2010, 31: 6519-6529 CrossRef PubMed Google Scholar

[98] Ikeda K, Okada T, Sawada SI, Akiyoshi K, Matsuzaki K. FEBS Lett, 2006, 580: 6587-6595 CrossRef PubMed Google Scholar

[99] Mourtas S, Canovi M, Zona C, Aurilia D, Niarakis A, La Ferla B, Salmona M, Nicotra F, Gobbi M, Antimisiaris SG. Biomaterials, 2011, 32: 1635-1645 CrossRef PubMed Google Scholar

[100] Akikusa S, Watanabe KI, Horikawa E, Nakamura K, Kodaka M, Okuno H, Konakahara T. J Pept Res, 2003, 61: 1-6 CrossRef Google Scholar

[101] Soto C, Kindy MS, Baumann M, Frangione B. Biochem Biophys Res Commun, 1996, 226: 672-680 CrossRef PubMed Google Scholar

[102] Chafekar SM, Malda H, Merkx M, Meijer EW, Viertl D, Lashuel HA, Baas F, Scheper W. ChemBioChem, 2007, 8: 1857-1864 CrossRef PubMed Google Scholar

[103] Findeis MA, Musso GM, Arico-Muendel CC, Benjamin HW, Hundal AM, Lee JJ, Chin J, Kelley M, Wakefield J, Hayward NJ, Molineaux SM. Biochemistry, 1999, 38: 6791-6800 CrossRef PubMed Google Scholar

[104] Zhao Z, Zhu L, Li H, Cheng P, Peng J, Yin Y, Yang Y, Wang C, Hu Z, Yang Y. Small, 2017, 13: 1602857 CrossRef PubMed Google Scholar

[105] Skaat H, Chen R, Grinberg I, Margel S. Biomacromolecules, 2012, 13: 2662-2670 CrossRef PubMed Google Scholar

[106] Gazit E. Chem Soc Rev, 2007, 36: 1263-1269 CrossRef PubMed Google Scholar

[107] Bastús NG, Sánchez-Tilló E, Pujals S, Farrera C, Kogan MJ, Giralt E, Celada A, Lloberas J, Puntes V. Mol Immunol, 2009, 46: 743-748 CrossRef PubMed Google Scholar

[108] Luo Q, Lin YX, Yang PP, Wang Y, Qi GB, Qiao ZY, Li BN, Zhang K, Zhang JP, Wang L, Wang H. Nat Commun, 2018, 9: 1802 CrossRef PubMed ADS Google Scholar

  • Figure 1

    (a) Schematic representation of a single molecular layer or cross-β unit. (b) Central Aβ40 molecule from the energy-minimized five-chain system viewed down the long axis of the fibril. Residues are color-coded according to their sidechains as hydrophobic (green) polar magenta positive (blue) or negative (red) [27]. (c) Three-dimensional high-resolution STM image of Aβ42 assemblies. V=−418.5 mV, I=919.2 pA. (d) Proposed structural model of a folded single Aβ42 molecule. The red and purple ribbons represent the two β-strands of the hairpin and the green lines indicate the β-turn between two β-strands and the random coil at the end of the Aβ42 [28]. (e) Proposed model for Aβ1-42 fibrillogenesis in vitro. The hierarchy of structure from the Aβ peptide monomer folded into a β-sheet structure through oligomer protofibrils to amyloid fibrils [36] (color online).

  • Figure 2

    (A) AFM images of the ion channel of amyloid peptide and the model proposed. (B) Individual amyloid channel-like oligomer structures at high resolution [38]. (C) An annular channel structure in the membrane based Aβ17-42 oligomer [37] (color online).

  • Figure 3

    (A) (a) Molecular structures of CdTe QDs and Aβ42 with similarities. (b) Kinetics of Aβ1-40 fibrillization with and without CdTe NPs were monitored by ThT fluorescence [45]. (B) (a) Schematic representation of the inhibited fibril formation of Aβ42 with GQD-T. (b) The inhibited fibril formation of Aβ42 with GQDs and GQD-T observed by fluorescence intensity. (c–g) The inhibited fibril formation of Aβ42 with GQDs and GQD-T observed by AFM. (h) The inhibited cytotoxity of Aβ42 with GQDs and GQD-T observed by MTT method [64] (color online).

  • Figure 4

    (A) Inhibition of Aβ fibrillization and reduction of Aβ neurotoxicity with bare gold nanoparticles. (a) Transmission electron microscopy (TEM) showed smooth fibrils formation in the absence of AuNPs while fragmented fibrils in the presence of AuNPs. (b) ThT fluorescence intensity was significantly reduced in addition of AuNPs. (c) Fibrillization kinetics of Aβ incubated with bare AuNPs and amine- and carboxyl-conjugated AuNPs by ThT assays. (d) The cytotoxicity was decreased in an AuNPs concentration-dependent manner [47]. (B) (a) Molecular dynamics detailed analysis for the Aβ-tetramer system Aβ-tetramer/AuNPs system Aβ-octamer system and Aβ-octamer/AuNPs system from the initial state. (b) Contact probability and binding free energy analysis of Aβ-tetramer/AuNPs system and Aβ-octamer/AuNPs system [73] (color online).

  • Figure 5

    The interactions between carbon nanotubes and proteins. (A) Cartoon representing Aβ16-22 monomer or oligomer absorption process on CNTs. (B) The changes of secondary structure probability of each residue for random Aβ16-22 in presence of SWCNT [41]. (C) The most preferred binding sites of proteins on SWCNTs. Residues highlighted in van der Waals representation corresponding to tyrosine colored in red and phenylalanine colored in green [83]. (D) (a) Illustration of SWNT-BMP hybrid Aβ inhibitor. (b, c) Effect of SWNTs BMPs and hybrid on the inhibition of Aβ fibrillation and cytotoxicity [84] (color online).

  • Figure 6

    (A) (a) Schematic representation of ThS-modified GO with high NIR absorbance used for AD treatment. (b) GO-ThS can effectively dissolve amyloid deposits of Aβ1-40 upon NIR laser irradiation confirmed by fluorescence images in Tris buffer (Top) and mice CSF (Bottom). (c) Cell toxicity of Aβ aggregates can be neutralized by ThS-GO [50]. (B) Schematic representation of the inhibition effect of g-C3N4@Pt for Aβ40 aggregation and toxic [88]. (C) AFM images of Aβ(33–42) aggregation structures modulatied by MoS2: (a) Aβ(33–42), (b) Aβ(33–42)-25 μg/mL, (c) Aβ(33–42)-50 μg/mL, (d) Aβ(33–42)-100 μg/mL. The scale bar in the image is 2 μm [89] (color online).

  • Figure 7

    (A) (a) Structure of [G3]-Mor. (b) Electron micrographs of Aβ 1-28 samples at the end of the aggregation process without and with [G3]-Mor. (c) Cell viability on treatment with Aβ1-28 without (white bars) and with 0.02 μM [G3]-Mor (light grey bars) and 0.2 μM (dark grey bars) [90]. (B) (a) Schematic representation of the possible modes of interaction between NP10-EGCG dual inhibitor and Aβ. (b--d) ThT fluorescence intensity and the viability of SH-SY5Y cells in the presence or absence of NP10-EGCG with different concentration ratio [95] (color online).

  • Figure 8

    (A) AIP1-Cys inhibits Aβ42 oligomerization. (a) ThT fluorescence; (b, c) AFM and (d) fluorescence leakage from calcein-trapped entrapped liposomes in the presence or absence of AIP1-Cys with different concentration ratio. (e) Schematic illustration of the mechanism for reduction of Aβ42 oligomer-induced membrane permeability by AIP1 [104]. (B) (a) The schematic illustration of the Aβ nanosweeper mechanism of action. (b, c) Soluble Aβ42 and insoluble Aβ42 in the presence or absence of the Aβ nanosweeper in the brain measured by ELISA. (d) The immunohistochemical analysis of Aβ42 deposition in the brains of WT control mice, AD control mice, AD mice treated with the Aβ nanosweeper. The Aβ42 deposits appeared as brown signals as indicated by red dotted circle. Scale bar is 50 μm. (e) The Nissl staining of nerve cells in the brains of WT control mice AD control mice AD mice treated with the Aβ nanosweeper [108] (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号