logo

SCIENTIA SINICA Chimica, Volume 49, Issue 2: 338-345(2019) https://doi.org/10.1360/N032018-00175

Regulation of Halogen-Halogen interaction in Halogen substituted trans-stilbenes and its effect on aggregation structures and luminescence properties

More info
  • ReceivedAug 4, 2018
  • AcceptedAug 27, 2018
  • PublishedOct 31, 2018

Abstract

Halogen-halogen (X···X) interaction is a kind of strong intermolecular interaction. This interaction has great impact on the aggregation structures and optoelectronic properties of organic π-conjugated molecules. However, it is still a great challenge to tune the X···X interactions among organic π-conjugated molecules. In this article, with trans-stilbene as an example, the regulation of halogen-halogen interactions between organic π-conjugated molecules is achieved through chemical structure modification, that is introducing electron-donating methylthio group and changing the position of halogen substituents on trans-stilbene skeleton. The influence of halogen-halogen interactions on the aggregation structure and luminescence properties of trans-stilbenes was investigated.


Funded by

国家自然科学基金(21672252,21472116)

上海启明星计划(18QA1405000)

中国科学院青年创新促进会(2018290)


References

[1] Li J, Wang M, Ren S, Gao X, Hong W, Li H, Zhu D. J Mater Chem, 2012, 22: 10496-10500 CrossRef Google Scholar

[2] Wang M, Li J, Zhao G, Wu Q, Huang Y, Hu W, Gao X, Li H, Zhu D. Adv Mater, 2013, 25: 2229-2233 CrossRef PubMed Google Scholar

[3] Yuan Y, Giri G, Ayzner AL, Zoombelt AP, Mannsfeld SCB, Chen J, Nordlund D, Toney MF, Huang J, Bao Z. Nat Commun, 2014, 5: 3005 CrossRef PubMed ADS Google Scholar

[4] Zhang F, Hu Y, Schuettfort T, Di C, Gao X, McNeill CR, Thomsen L, Mannsfeld SCB, Yuan W, Sirringhaus H, Zhu D. J Am Chem Soc, 2013, 135: 2338-2349 CrossRef PubMed Google Scholar

[5] Li L, Tang Q, Li H, Yang X, Hu W, Song Y, Shuai Z, Xu W, Liu Y, Zhu D. Adv Mater, 2007, 19: 2613-2617 CrossRef Google Scholar

[6] Dai S, Zhao F, Zhang Q, Lau TK, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X. J Am Chem Soc, 2017, 139: 1336-1343 CrossRef PubMed Google Scholar

[7] Sun D, Meng D, Cai Y, Fan B, Li Y, Jiang W, Huo L, Sun Y, Wang Z. J Am Chem Soc, 2015, 137: 11156-11162 CrossRef PubMed Google Scholar

[8] Bin H, Yang Y, Zhang ZG, Ye L, Ghasemi M, Chen S, Zhang Y, Zhang C, Sun C, Xue L, Yang C, Ade H, Li Y. J Am Chem Soc, 2017, 139: 5085-5094 CrossRef PubMed Google Scholar

[9] Yuan WZ, Gong Y, Chen S, Shen XY, Lam JWY, Lu P, Lu Y, Wang Z, Hu R, Xie N, Kwok HS, Zhang Y, Sun JZ, Tang BZ. Chem Mater, 2012, 24: 1518-1528 CrossRef Google Scholar

[10] Liu S, Zhang X, Ou C, Wang S, Yang X, Zhou X, Mi B, Cao D, Gao Z. ACS Appl Mater Interfaces, 2017, 9: 26242-26251 CrossRef Google Scholar

[11] Sonar P, Soh MS, Cheng YH, Henssler JT, Sellinger A. Org Lett, 2010, 12: 3292-3295 CrossRef PubMed Google Scholar

[12] Park SK, Jackson TN, Anthony JE, Mourey DA. Appl Phys Lett, 2007, 91: 063514 CrossRef ADS Google Scholar

[13] Giri G, Verploegen E, Mannsfeld SCB, Atahan-Evrenk S, Kim DH, Lee SY, Becerril HA, Aspuru-Guzik A, Toney MF, Bao Z. Nature, 2011, 480: 504-508 CrossRef PubMed ADS Google Scholar

[14] Chen P, Shi S, Wang H, Qiu F, Wang Y, Tang Y, Feng JR, Guo H, Cheng X, Guo X. ACS Appl Mater Interfaces, 2018, 10: 21481-21491 CrossRef Google Scholar

[15] Gross YM, Trefz D, Tkachov R, Untilova V, Brinkmann M, Schulz GL, Ludwigs S. Macromolecules, 2017, 50: 5353-5366 CrossRef ADS Google Scholar

[16] McDearmon B, Lim E, Lee IH, Kozycz LM, O'Hara K, Robledo PI, Venkatesan NR, Chabinyc ML, Hawker CJ. Macromolecules, 2018, 51: 2580-2590 CrossRef ADS Google Scholar

[17] Dou JH, Zheng YQ, Yao ZF, Yu ZA, Lei T, Shen X, Luo XY, Sun J, Zhang SD, Ding YF, Han G, Yi Y, Wang JY, Pei J. J Am Chem Soc, 2015, 137: 15947-15956 CrossRef PubMed Google Scholar

[18] Takahashi Y, Hasegawa T, Horiuchi S, Kumai R, Tokura Y, Saito G. Chem Mater, 2007, 19: 6382-6384 CrossRef Google Scholar

[19] Kim R, Amegadze PSK, Kang I, Yun HJ, Noh YY, Kwon SK, Kim YH. Adv Funct Mater, 2013, 23: 5719-5727 CrossRef Google Scholar

[20] Lv A, Puniredd SR, Zhang J, Li Z, Zhu H, Jiang W, Dong H, He Y, Jiang L, Li Y, Pisula W, Meng Q, Hu W, Wang Z. Adv Mater, 2012, 24: 2626-2630 CrossRef PubMed Google Scholar

[21] Li J, Qiao X, Xiong Y, Li H, Zhu D. Chem Mater, 2014, 26: 5782-5788 CrossRef Google Scholar

[22] Lei T, Dou JH, Cao XY, Wang JY, Pei J. J Am Chem Soc, 2013, 135: 12168-12171 CrossRef PubMed Google Scholar

[23] Gsänger M, Oh JH, Könemann M, Höffken HW, Krause AM, Bao Z, Würthner F. Angew Chem Int Ed, 2010, 49: 740-743 CrossRef PubMed Google Scholar

[24] Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. Chem Rev, 2016, 116: 2478-2601 CrossRef PubMed Google Scholar

[25] Huang W, Zhang H, Ma J, Chen M, Zhu H, Wang W. J Mater Chem C, 2015, 3: 6200-6208 CrossRef Google Scholar

[26] Zhang X, Ma Z, Yang Y, Zhang X, Jia X, Wei Y. J Mater Chem C, 2014, 2: 8932-8938 CrossRef Google Scholar

[27] Dong X, Yang Y, Sun J, Liu Z, Liu BF. Chem Commun, 2009, 19: 3883 CrossRef PubMed Google Scholar

  • Figure 1

    The chemical structures and synthetic routes of Br-DPE and Br/Cl/I/Br*-BMTPE.

  • Figure 2

    (a, b) Single crystal structure of compound Br-DPE. (c, d) Single crystal structure of compound Br*-BMTPE (color online).

  • Figure 3

    The crystal structures of compounds of Br–BMTPE (a–c), Cl-BMTPE (d–f) and I-BMTPE (g–i) (color online).

  • Figure 4

    UV-vis absorption spectra of Br-DPE and Br/Cl/I/Br*-BMTPE. (a) Solution absorptions; (b) film absorptions (color online).

  • Figure 5

    Solution (a) and film (b) fluorescence spectra of compounds Br-DPE and Br/Cl/I/Br*-BMTPE; their solution (c) and crystal (d) fluorescence color phenomenon (color online).

  • Table 1   Crystallographic parameters of compounds and

    化合物

    Br-DPE

    Br-BMTPE

    Cl-BMTPE

    I-BMTPE

    Br*-BMTPE

    分子式

    C14H10Br2

    C16H14Br2S2

    C16H14Cl2S2

    C16H14I2S2

    C16H14Br2S2

    相对分子质量

    338.02

    430.21

    341.29

    524.19

    430.21

    温度

    173(2) K

    173(2) K

    296(2) K

    173(2) K

    296(2) K

    键长

    1.54178 Å

    0.71073 Å

    0.71073 Å

    1.54178 Å

    0.71073 Å

    晶系

    单斜

    单斜

    单斜

    单斜

    单斜

    空间群

    P 21/c

    C 2/c

    C 2/c

    P 21/c

    P 21/c

    a (Å)

    9.7735(8)

    18.3392(7)

    18.1548(5)

    12.7128(11)

    5.369(4)

    b (Å)

    3.9672(3)

    4.7624(2)

    4.80930(10)

    4.5450(5)

    20.271(12)

    c (Å)

    15.5248(12)

    18.5594(8)

    18.5751(6)

    14.7654(14)

    7.596(5)

    α (°)

    90

    90

    90

    90

    90

    β (°)

    93.005(2)

    96.425(2)

    97.7360(10)

    92.745(6)

    91.48(2)

    γ (°)

    90

    90

    90

    90

    90

    V3)

    601.12(8)

    1614.24(12)

    1607.07(8)

    852.16(14)

    826.5(9)

    D (g/cm3)

    1.867

    1.770

    1.411

    2.043

    1.729

    Z

    2

    4

    4

    2

    2

    F(000)

    328.0

    848

    704

    496.0

    424

  • Table 2   Absolute fluorescence quantum efficiency of compounds

    化合物

    Br-BMTPE

    Cl-BMTPE

    I-BMTPE

    Br*-BMTPE

    绝对荧光量子效率

    13.31%

    61.60%

    9.02%

    80.69%

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1