logo

SCIENTIA SINICA Chimica, Volume 49, Issue 3: 516-524(2019) https://doi.org/10.1360/N032018-00179

Application of confinement effects in on-surface chemistry

More info
  • ReceivedAug 14, 2018
  • AcceptedOct 22, 2018
  • PublishedDec 24, 2018

Abstract

Fabrication of different functionalized nanostructures by on-surface “bottom-up” approach has drawn much attention in recent years. In order to realize a controllable synthesis of target nanostructures, well-designed precursors, suitable substrates and proper experiment conditions have to be selected. Particularly, some special surface-based confinement effects have been utilized for steering on-surface reactions. In this feature article, combined studies from our group, we summarize recent studies of different kinds of confinement effects in surface chemistry, which includes four aspects: (1) controlling the species of products through adsorbate-substrate symmetry matching; (2) steering on-surface reaction through a steric-hindrance effect of precursors; (3) control of the dimensions and morphologies of the products by employing super-gratings templates; (4) steering on-surface reaction by self-assembly approaches. Furthermore, we provide a short outlook for precise on-surface synthesis through two-dimensional confinement effects at the end.


Funded by

国家自然科学基金(21473178,21773222)


References

[1] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R. Nature, 2010, 466: 470-473 CrossRef PubMed ADS Google Scholar

[2] Cai J, Pignedoli CA, Talirz L, Ruffieux P, Söde H, Liang L, Meunier V, Berger R, Li R, Feng X, Müllen K, Fasel R. Nat Nanotech, 2014, 9: 896-900 CrossRef PubMed ADS Google Scholar

[3] Deniz O, Sánchez-Sánchez C, Dumslaff T, Feng X, Narita A, Müllen K, Kharche N, Meunier V, Fasel R, Ruffieux P. Nano Lett, 2017, 17: 2197-2203 CrossRef PubMed ADS Google Scholar

[4] Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli CA, Passerone D, Dumslaff T, Feng X, Müllen K, Fasel R. Nature, 2016, 531: 489-492 CrossRef PubMed ADS arXiv Google Scholar

[5] Vasseur G, Fagot-Revurat Y, Sicot M, Kierren B, Moreau L, Malterre D, Cardenas L, Galeotti G, Lipton-Duffin J, Rosei F, Di Giovannantonio M, Contini G, Le Fèvre P, Bertran F, Liang L, Meunier V, Perepichka DF. Nat Commun, 2016, 7: 10235 CrossRef PubMed ADS arXiv Google Scholar

[6] Urgel JI, Hayashi H, Di Giovannantonio M, Pignedoli CA, Mishra S, Deniz O, Yamashita M, Dienel T, Ruffieux P, Yamada H, Fasel R. J Am Chem Soc, 2017, 139: 11658-11661 CrossRef PubMed Google Scholar

[7] Kim M, Safron NS, Han E, Arnold MS, Gopalan P. Nano Lett, 2010, 10: 1125-1131 CrossRef PubMed ADS Google Scholar

[8] Wang G, Rühling A, Amirjalayer S, Knor M, Ernst JB, Richter C, Gao HJ, Timmer A, Gao HY, Doltsinis NL, Glorius F, Fuchs H. Nat Chem, 2017, 9: 152-156 CrossRef PubMed ADS Google Scholar

[9] Mehdi Pour M, Lashkov A, Radocea A, Liu X, Sun T, Lipatov A, Korlacki RA, Shekhirev M, Aluru NR, Lyding JW, Sysoev V, Sinitskii A. Nat Commun, 2017, 8: 820 CrossRef PubMed ADS Google Scholar

[10] Kawai S, Saito S, Osumi S, Yamaguchi S, Foster AS, Spijker P, Meyer E. Nat Commun, 2015, 6: 8098 CrossRef PubMed ADS Google Scholar

[11] Zhang C, Wang L, Xie L, Ding Y, Xu W. Chem Eur J, 2017, 23: 2356-2362 CrossRef PubMed Google Scholar

[12] Wang T, Lv H, Fan Q, Feng L, Wu X, Zhu J. Angew Chem Int Ed, 2017, 56: 4762-4766 CrossRef PubMed Google Scholar

[13] Xu W, Kelly REA, Gersen H, Laegsgaard E, Stensgaard I, Kantorovich LN, Besenbacher F. Small, 2009, 5: 1952-1956 CrossRef PubMed Google Scholar

[14] Ernst KH. Nat Chem, 2017, 9: 195-196 CrossRef PubMed ADS Google Scholar

[15] Murray LJ, Dincă M, Long JR. Chem Soc Rev, 2009, 38: 1294-1314 CrossRef PubMed Google Scholar

[16] Segawa Y, Ito H, Itami K. Nat Rev Mater, 2016, 1: --14 CrossRef ADS Google Scholar

[17] Fan Q, Wang T, Liu L, Zhao J, Zhu J, Gottfried JM. J Chem Phys, 2015, 142: 101906 CrossRef PubMed ADS Google Scholar

[18] Fan Q, Wang C, Liu L, Han Y, Zhao J, Zhu J, Kuttner J, Hilt G, Gottfried JM. J Phys Chem C, 2014, 118: 13018-13025 CrossRef Google Scholar

[19] Zhang H, Lin H, Sun K, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong D, Li Y, Müllen K, Fuchs H, Chi L. J Am Chem Soc, 2015, 137: 4022-4025 CrossRef PubMed Google Scholar

[20] Liu J, Dienel T, Liu J, Groening O, Cai J, Feng X, Müllen K, Ruffieux P, Fasel R. J Phys Chem C, 2016, 120: 17588-17593 CrossRef Google Scholar

[21] Gao HY, Wagner H, Zhong D, Franke JH, Studer A, Fuchs H. Angew Chem Int Ed, 2013, 52: 4024-4028 CrossRef PubMed Google Scholar

[22] Zhang YQ, Kepčija N, Kleinschrodt M, Diller K, Fischer S, Papageorgiou AC, Allegretti F, Björk J, Klyatskaya S, Klappenberger F, Ruben M, Barth JV. Nat Commun, 2012, 3: 1286 CrossRef PubMed ADS Google Scholar

[23] Gao HY, Zhong D, Mönig H, Wagner H, Held PA, Timmer A, Studer A, Fuchs H. J Phys Chem C, 2014, 118: 6272-6277 CrossRef Google Scholar

[24] Sun Q, Cai L, Ma H, Yuan C, Xu W. ACS Nano, 2016, 10: 7023-7030 CrossRef Google Scholar

[25] Otero G, Biddau G, Sánchez-Sánchez C, Caillard R, López MF, Rogero C, Palomares FJ, Cabello N, Basanta MA, Ortega J, Méndez J, Echavarren AM, Pérez R, Gómez-Lor B, Martín-Gago JA. Nature, 2008, 454: 865-868 CrossRef PubMed ADS Google Scholar

[26] Basagni A, Sedona F, Pignedoli CA, Cattelan M, Nicolas L, Casarin M, Sambi M. J Am Chem Soc, 2015, 137: 1802-1808 CrossRef PubMed Google Scholar

[27] Treier M, Pignedoli CA, Laino T, Rieger R, Müllen K, Passerone D, Fasel R. Nat Chem, 2011, 3: 61-67 CrossRef PubMed ADS Google Scholar

[28] Han P, Akagi K, Federici Canova F, Mutoh H, Shiraki S, Iwaya K, Weiss PS, Asao N, Hitosugi T. ACS Nano, 2014, 8: 9181-9187 CrossRef PubMed Google Scholar

[29] Bieri M, Nguyen MT, Gröning O, Cai J, Treier M, Aït-Mansour K, Ruffieux P, Pignedoli CA, Passerone D, Kastler M, Müllen K, Fasel R. J Am Chem Soc, 2010, 132: 16669-16676 CrossRef PubMed Google Scholar

[30] Lafferentz L, Eberhardt V, Dri C, Africh C, Comelli G, Esch F, Hecht S, Grill L. Nat Chem, 2012, 4: 215-220 CrossRef PubMed ADS Google Scholar

[31] Fan Q, Wang T, Dai J, Kuttner J, Hilt G, Gottfried JM, Zhu J. ACS Nano, 2017, 11: 5070-5079 CrossRef Google Scholar

[32] Liu J, Chen Q, Xiao L, Shang J, Zhou X, Zhang Y, Wang Y, Shao X, Li J, Chen W, Xu GQ, Tang H, Zhao D, Wu K. ACS Nano, 2015, 9: 6305-6314 CrossRef Google Scholar

[33] Klappenberger F, Hellwig R, Du P, Paintner T, Uphoff M, Zhang L, Lin T, Moghanaki BA, Paszkiewicz M, Vobornik I, Fujii J, Fuhr O, Zhang YQ, Allegretti F, Ruben M, Barth JV. Small, 2018, 14: 1704321 CrossRef PubMed Google Scholar

[34] Zhong D, Franke JH, Podiyanachari SK, Blömker T, Zhang H, Kehr G, Erker G, Fuchs H, Chi L. Science, 2011, 334: 213-216 CrossRef PubMed ADS Google Scholar

[35] Zhou X, Wang C, Zhang Y, Cheng F, He Y, Shen Q, Shang J, Shao X, Ji W, Chen W, Xu G, Wu K. Angew Chem Int Ed, 2017, 56: 12852-12856 CrossRef PubMed Google Scholar

[36] Zhang R, Lyu G, Li DY, Liu PN, Lin N. Chem Commun, 2017, 53: 1731-1734 CrossRef PubMed Google Scholar

[37] Cirera B, Giménez-Agulló N, Björk J, Martínez-Peña F, Martin-Jimenez A, Rodriguez-Fernandez J, Pizarro AM, Otero R, Gallego JM, Ballester P, Galan-Mascaros JR, Ecija D. Nat Commun, 2016, 7: 11002 CrossRef PubMed ADS Google Scholar

[38] Liu M, Liu M, She L, Zha Z, Pan J, Li S, Li T, He Y, Cai Z, Wang J, Zheng Y, Qiu X, Zhong D. Nat Commun, 2017, 8: 14924 CrossRef PubMed ADS Google Scholar

[39] Wang H, Zhang H, Chi LF. Adv Polym Sci, 2017, 278: 67–97. Google Scholar

[40] Wang C, Fan Q, Han Y, Martínez JI, Martín-Gago JA, Wang W, Ju H, Gottfried JM, Zhu J. Nanoscale, 2016, 8: 1123-1132 CrossRef PubMed ADS Google Scholar

[41] Champness NR. Nat Chem, 2012, 4: 149-150 CrossRef PubMed ADS Google Scholar

[42] Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S. Nat Nanotech, 2007, 2: 687-691 CrossRef PubMed ADS Google Scholar

[43] Colson JW, Dichtel WR. Nat Chem, 2013, 5: 453-465 CrossRef PubMed ADS Google Scholar

[44] Haq S, Hanke F, Dyer MS, Persson M, Iavicoli P, Amabilino DB, Raval R. J Am Chem Soc, 2011, 133: 12031-12039 CrossRef PubMed Google Scholar

[45] Lindner R, Kühnle A. ChemPhysChem, 2015, 16: 1582-1592 CrossRef PubMed Google Scholar

[46] Lackinger M. Chem Commun, 2017, 53: 7872-7885 CrossRef PubMed Google Scholar

[47] Fan Q, Wang C, Han Y, Zhu J, Hieringer W, Kuttner J, Hilt G, Gottfried JM. Angew Chem Int Ed, 2013, 52: 4668-4672 CrossRef PubMed Google Scholar

[48] Dai J, Fan Q, Wang T, Kuttner J, Hilt G, Gottfried JM, Zhu J. Phys Chem Chem Phys, 2016, 18: 20627-20634 CrossRef PubMed ADS Google Scholar

[49] Fan QT, Werner S, Tschakert J, Ebeling D, Schirmeisen A, Hilt G, Hieringer W, Gottfried JM. J Am Chem Soc, 2018, in press. Google Scholar

[50] Fan Q, Gottfried JM, Zhu J. Acc Chem Res, 2015, 48: 2484-2494 CrossRef PubMed Google Scholar

[51] Talirz L, Söde H, Dumslaff T, Wang S, Sanchez-Valencia JR, Liu J, Shinde P, Pignedoli CA, Liang L, Meunier V, Plumb NC, Shi M, Feng X, Narita A, Müllen K, Fasel R, Ruffieux P. ACS Nano, 2017, 11: 1380-1388 CrossRef Google Scholar

[52] Talirz L, Ruffieux P, Fasel R. Adv Mater, 2016, 28: 6222-6231 CrossRef PubMed Google Scholar

[53] Fan Q, Dai J, Wang T, Kuttner J, Hilt G, Gottfried JM, Zhu J. ACS Nano, 2016, 10: 3747-3754 CrossRef Google Scholar

[54] Zhou X, Dai J, Wu K. Phys Chem Chem Phys, 2017, 19: 31531-31539 CrossRef PubMed ADS Google Scholar

[55] Chen Q, Cramer JR, Liu J, Jin X, Liao P, Shao X, Gothelf KV, Wu K. Angew Chem Int Ed, 2017, 56: 5026-5030 CrossRef PubMed Google Scholar

[56] Sun K, Chen A, Liu M, Zhang H, Duan R, Ji P, Li L, Li Q, Li C, Zhong D, Müllen K, Chi L. J Am Chem Soc, 2018, 140: 4820-4825 CrossRef PubMed Google Scholar

  • Figure 1

    (a) Major reaction pathways for 4,4″-dibromo-meta-terphenyl (DMTP) on Cu(110) and Cu(111) surfaces. (b) Overview STM image obtained after deposition of DMTP onto Cu(111) held at 550 K [47]. (c) Magnified view of a hyperbenzene island. (d) Magnified view of oligophenylene chains. (e) Overview STM image obtained after deposition of 0.84 ML DMTP onto Cu(110) held at 383 K and subsequent annealing to 458 K [48]. (f) Zoom-in STM image of green framed region in (e) (color online).

  • Figure 2

    (a) Reaction of 4′,6′-dibromo-meta-terphenyl (DBMTP) 1 into the dimer 5′,5′′-diphenyl-meta-quaterphenyl biradical (DMQBR) 2. (b) Reaction of 3′,5′-dibromo-otho-terphenyl (DBOTP) 3 into the trimer 2,3,6,7,10,11-hexaphenyl-triphenylene (HPTP) 4. Further cyclodehydrogenation of 4 leads to the formation of hexabenzo[a,c,k,m,u,w]trinaphthylene (HBTN) 5. (c) STM image obtained after deposition of a submonolayer of DBMTP onto Cu(111) at 300 K, followed by annealing to 400 K. (d) STM image obtained after annealing the sample in (c) to 440 K. (e) STM image obtained after deposition of a submonolayer of DBOTP onto Cu(111) at <100 K. (f) STM image obtained after deposition of a submonolayer of DBOTP onto Cu(111) held at 430 K, followed by annealing to 500 K [49] (color online).

  • Figure 3

    (a) Overview STM image taken after deposition of 0.22 ML DMTP onto Cu(110)-(2×1)O held at 383 K. (b) Zoom-in STM image of the blue-framed region in panel (a). The panels (c−f) show the magnified view of organometallic species formed on the sample in panel (a). The corresponding molecular models are shown in (g−j). (c, g) Section of trapezoid-wavelike oligomeric chains (MTP-Cu)4n. (d, h) Tetramer (MTP-Cu)4. (e, i) Rotated tetramer (MTP-Cu)4. (f, j) Hexamer (MTP-Cu)6. Black spheres represent carbon atoms; white, hydrogen; blue, bromine; red, oxygen; coppery, copper atom [53] (color online).

  • Figure 4

    (a) Possible dehydrocyclization and coupling reaction pathways of 4,4′-bis(2,6-difluoropyridin-4-yl)-1,1′:4′,1′′-terphenyl (BDFPTP) on Au(111). (b) STM image of disordered structure formed by rapid annealing up to 500 K. (c) STM image of ordered assembly structure formed by long-time annealing at 500 K. (d) STM image of reaction products from structure (b) at 520 K. (e) STM image of reaction products from structure (c) at 520 K [54] (color online).

  • Figure 5

    (a) Overview STM image obtained after deposition of 0.7 ML BPBE molecules onto Ag(111) held at 420 K. (b) Zoom-in STM image of an area that contains the main products. (c) Statistical analysis of the different products after deposition of 0.7 ML BPBE molecules onto Ag(111) held at 420 K. (d) STM image of the sample prepared by deposition of 0.6 ML EBP onto Ag(111) held at RT. The inset of (d) shows the chemical structure of the EBP molecule. (e) STM image of the sample prepared by deposition of 0.6 ML EBP onto Ag(111) held at 500 K. (f) The chemical structure of the main products shown in (e) [12] (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1