logo

SCIENTIA SINICA Chimica, Volume 49, Issue 3: 536-555(2019) https://doi.org/10.1360/N032018-00184

Probing surface water at submolecular level with scanning probe microscopy

More info
  • ReceivedAug 16, 2018
  • AcceptedOct 17, 2018
  • PublishedJan 18, 2019

Abstract

Water-solid interfaces play important roles in a wide range of scientific areas and technique processes such as the dissolution, lubrication, erosion, electrochemistry and heterogeneous catalysis. Many remarkable physical and chemical properties of water are related to the hydrogen-bonding interaction. Thus it is a key issue to understand the hydrogen-bonding network and relevant dynamics of interfacial water at single molecule or even submolecular level. Scanning probe microscope has become a powerful tool to study the water-solid interfaces due to its capability of imaging with atomic resolution. In this feature article we will introduce the recent progress of our group on the development of submolecular-resolution imaging and spectroscopic techniques, and their applications to address the microscopic structure of the hydrogen-bonded network of water, the dynamics of proton transfer, nuclear quantum effect on the strength of hydrogen bond and water-ion interaction. Finally, future directions and challenges about the study of water-solid interface are remarked.


Funded by

国家重点研发计划(2016YFA0300901,2017YFA0205003)

国家自然科学基金重点项目(11634001)

国家杰出青年科学基金(21725302)

国家自然科学基金重大项目(11290162/A040106)


References

[1] Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ. Pure Appl Chem, 2011, 83: 1637-1641 CrossRef Google Scholar

[2] Henderson MA. Surf Sci Rep, 2002, 46: 1-308 CrossRef ADS Google Scholar

[3] Hodgson A, Haq S. Surf Sci Rep, 2009, 64: 381-451 CrossRef ADS Google Scholar

[4] Al-Abadleh HA, Grassian VH. Surf Sci Rep, 2003, 52: 63-161 CrossRef ADS Google Scholar

[5] Madey T. Vacuum, 1990, 40: 224 CrossRef Google Scholar

[6] Benoit M, Marx D, Parrinello M. Nature, 1998, 392: 258-261 CrossRef ADS Google Scholar

[7] Soper AK, Benmore CJ. Phys Rev Lett, 2008, 101: 065502 CrossRef PubMed ADS Google Scholar

[8] Ceriotti M, Fang W, Kusalik PG, McKenzie RH, Michaelides A, Morales MA, Markland TE. Chem Rev, 2016, 116: 7529-7550 CrossRef PubMed Google Scholar

[9] Ernst JA, Clubb RT, Zhou HX, Gronenborn AM, Marius Clore G. Science, 1995, 267: 1813-1817 CrossRef ADS Google Scholar

[10] Braun J, Glebov A, Graham AP, Menzel A, Toennies JP. Phys Rev Lett, 1998, 80: 2638-2641 CrossRef ADS Google Scholar

[11] Glebov AL, Graham AP, Menzel A. Surf Sci, 1999, 427-428: 22-26 CrossRef ADS Google Scholar

[12] Sun T, Lin FH, Campbell RL, Allingham JS, Davies PL. Science, 2014, 343: 795-798 CrossRef PubMed ADS Google Scholar

[13] Doering DL, Madey TE. Surf Sci, 1982, 123: 305-337 CrossRef ADS Google Scholar

[14] Nakamura M, Ito M. Chem Phys Lett, 2000, 325: 293-298 CrossRef ADS Google Scholar

[15] Tulk CA, Benmore CJ, Urquidi J, Klug DD, Neuefeind J, Tomberli B, Egelstaff PA. Science, 2002, 297: 1320-1323 CrossRef PubMed ADS Google Scholar

[16] Nauta K, Miller RE. Science, 2000, 287: 293-295 CrossRef ADS Google Scholar

[17] Pérez C, Muckle MT, Zaleski DP, Seifert NA, Temelso B, Shields GC, Kisiel Z, Pate BH. Science, 2012, 336: 897-901 CrossRef PubMed ADS Google Scholar

[18] Carrasco J, Hodgson A, Michaelides A. Nat Mater, 2012, 11: 667-674 CrossRef PubMed ADS arXiv Google Scholar

[19] Repp J, Meyer G, Stojković SM, Gourdon A, Joachim C. Phys Rev Lett, 2005, 94: 026803 CrossRef PubMed ADS Google Scholar

[20] Michaelides A, Morgenstern K. Nat Mater, 2007, 6: 597-601 CrossRef PubMed Google Scholar

[21] Mitsui T, Rose MK, Fomin E, Ogletree DF, Salmeron M. Science, 2002, 297: 1850-1852 CrossRef PubMed ADS Google Scholar

[22] Morgenstern K, Nieminen J. Phys Rev Lett, 2002, 88: 066102. Google Scholar

[23] Guo J, Meng X, Chen J, Peng J, Sheng J, Li XZ, Xu L, Shi JR, Wang E, Jiang Y. Nat Mater, 2014, 13: 184-189 CrossRef PubMed ADS Google Scholar

[24] Peng J, Guo J, Hapala P, Cao D, Ma R, Cheng B, Xu L, Ondráček M, Jelínek P, Wang E, Jiang Y. Nat Commun, 2018, 9: 122 CrossRef PubMed ADS Google Scholar

[25] Shiotari A, Sugimoto Y. Nat Commun, 2017, 8: 14313 CrossRef PubMed ADS Google Scholar

[26] Stipe BC, Rezaei MA, Ho W. Science, 1998, 280: 1732-1735 CrossRef ADS Google Scholar

[27] Gawronski H, Mehlhorn M, Morgenstern K. Science, 2008, 319: 930-933 CrossRef PubMed ADS Google Scholar

[28] Kim Y, Komeda T, Kawai M. Phys Rev Lett, 2002, 89: 126104 CrossRef PubMed ADS Google Scholar

[29] Heinrich AJ, Lutz CP, Gupta JA, Eigler DM. Science, 2002, 298: 1381-1387 CrossRef PubMed ADS Google Scholar

[30] Lorente N, Persson M. Phys Rev Lett, 2000, 85: 2997-3000 CrossRef PubMed ADS Google Scholar

[31] Galperin M, Ratner MA, Nitzan A, Troisi A. Science, 2008, 319: 1056-1060 CrossRef PubMed ADS Google Scholar

[32] Morgenstern K. Surf Sci, 2002, 504: 293-300 CrossRef ADS Google Scholar

[33] Persson BNJ, Baratoff A. Phys Rev Lett, 1987, 59: 339-342 CrossRef PubMed ADS Google Scholar

[34] Guo J, Lü JT, Feng Y, Chen J, Peng J, Lin Z, Meng X, Wang Z, Li XZ, Wang EG, Jiang Y. Science, 2016, 352: 321-325 CrossRef PubMed ADS Google Scholar

[35] Gawronski H, Carrasco J, Michaelides A, Morgenstern K. Phys Rev Lett, 2008, 101: 136102 CrossRef PubMed ADS Google Scholar

[36] Mehlhorn M, Morgenstern K. Phys Rev Lett, 2007, 99: 246101 CrossRef PubMed ADS Google Scholar

[37] Thürmer K, Bartelt NC. Phys Rev Lett, 2008, 100: 186101 CrossRef PubMed ADS Google Scholar

[38] Salmeron M, Bluhm H, Tatarkhanov M, Ketteler G, Shimizu TK, Mugarza A, Deng X, Herranz T, Yamamoto S, Nilsson A. Faraday Discuss, 2009, 141: 221-229 CrossRef ADS Google Scholar

[39] Tatarkhanov M, Fomin E, Salmeron M, Andersson K, Ogasawara H, Pettersson LGM, Nilsson A, Cerdá JI. J Chem Phys, 2008, 129: 154109 CrossRef PubMed ADS Google Scholar

[40] Yamada T, Tamamori S, Okuyama H, Aruga T. Phys Rev Lett, 2006, 96: 036105 CrossRef PubMed ADS Google Scholar

[41] Carrasco J, Michaelides A, Forster M, Haq S, Raval R, Hodgson A. Nat Mater, 2009, 8: 427-431 CrossRef PubMed ADS Google Scholar

[42] Nie S, Feibelman PJ, Bartelt NC, Thürmer K. Phys Rev Lett, 2010, 105: 026102 CrossRef PubMed ADS Google Scholar

[43] Verdaguer A, Sacha GM, Bluhm H, Salmeron M. Chem Rev, 2006, 106: 1478-1510 CrossRef PubMed Google Scholar

[44] Ewing GE. Chem Rev, 2006, 106: 1511-1526 CrossRef PubMed Google Scholar

[45] Rossi MJ. Chem Rev, 2003, 103: 4823-4882 CrossRef PubMed Google Scholar

[46] Chen J, Guo J, Meng X, Peng J, Sheng J, Xu L, Jiang Y, Li XZ, Wang EG. Nat Commun, 2014, 5: 4056 CrossRef PubMed ADS Google Scholar

[47] Fölsch S, Stock A, Henzler M. Surf Sci, 1992, 264: 65-72 CrossRef ADS Google Scholar

[48] Peters SJ, Ewing GE. J Phys Chem B, 1997, 101: 10880-10886 CrossRef Google Scholar

[49] Park JM, Cho JH, Kim KS. Phys Rev B, 2004, 69: 233403 CrossRef ADS Google Scholar

[50] Yang Y, Meng S, Wang EG. Phys Rev B, 2006, 74: 245409. Google Scholar

[51] Forster M, Raval R, Hodgson A, Carrasco J, Michaelides A. Phys Rev Lett, 2011, 106: 046103 CrossRef PubMed ADS Google Scholar

[52] Masgrau L. Science, 2006, 312: 1600–1600. Google Scholar

[53] Horiuchi S, Tokunaga Y, Giovannetti G, Picozzi S, Itoh H, Shimano R, Kumai R, Tokura Y. Nature, 2010, 463: 789-792 CrossRef PubMed ADS Google Scholar

[54] Brougham DF, Caciuffo R, Horsewill AJ. Nature, 1999, 397: 241-243 CrossRef ADS Google Scholar

[55] Bove LE, Klotz S, Paciaroni A, Sacchetti F. Phys Rev Lett, 2009, 103: 165901 CrossRef PubMed ADS Google Scholar

[56] Drechsel-Grau C, Marx D. Phys Rev Lett, 2014, 112: 148302 CrossRef PubMed ADS Google Scholar

[57] Kumagai T, Shiotari A, Okuyama H, Hatta S, Aruga T, Hamada I, Frederiksen T, Ueba H. Nat Mater, 2012, 11: 167-172 CrossRef PubMed ADS Google Scholar

[58] Liljeroth P, Repp J, Meyer G. Science, 2007, 317: 1203-1206 CrossRef PubMed ADS Google Scholar

[59] Merte LR, Peng G, Bechstein R, Rieboldt F, Farberow CA, Grabow LC, Kudernatsch W, Wendt S, Laegsgaard E, Mavrikakis M, Besenbacher F. Science, 2012, 336: 889-893 CrossRef PubMed ADS Google Scholar

[60] Auwärter W, Seufert K, Bischoff F, Ecija D, Vijayaraghavan S, Joshi S, Klappenberger F, Samudrala N, Barth JV. Nat Nanotech, 2012, 7: 41-46 CrossRef PubMed ADS Google Scholar

[61] Meng X, Guo J, Peng J, Chen J, Wang Z, Shi JR, Li XZ, Wang EG, Jiang Y. Nat Phys, 2015, 11: 235-239 CrossRef ADS Google Scholar

[62] Feng Y, Wang Z, Guo J, Chen J, Wang EG, Jiang Y, Li XZ. J Chem Phys, 2018, 148: 102329 CrossRef PubMed ADS Google Scholar

[63] Yen F, Gao T. J Phys Chem Lett, 2015, 6: 2822-2825 CrossRef PubMed Google Scholar

[64] Richardson JO, Pérez C, Lobsiger S, Reid AA, Temelso B, Shields GC, Kisiel Z, Wales DJ, Pate BH, Althorpe SC. Science, 2016, 351: 1310-1313 CrossRef PubMed ADS Google Scholar

[65] Paesani F, Voth GA. J Phys Chem B, 2009, 113: 5702-5719 CrossRef PubMed Google Scholar

[66] Tuckerman ME. Science, 1997, 275: 817-820 CrossRef Google Scholar

[67] Voth GA, Chandler D, Miller WH. J Chem Phys, 1989, 91: 7749-7760 CrossRef ADS Google Scholar

[68] Li XZ, Walker B, Michaelides A. Proc Natl Acad Sci USA, 2011, 108: 6369-6373 CrossRef ADS Google Scholar

[69] Nagata Y, Pool RE, Backus EHG, Bonn M. Phys Rev Lett, 2012, 109: 226101 CrossRef PubMed ADS Google Scholar

[70] Morrone JA, Car R. Phys Rev Lett, 2008, 101: 017801 CrossRef PubMed ADS arXiv Google Scholar

[71] Harada Y, Tokushima T, Horikawa Y, Takahashi O, Niwa H, Kobayashi M, Oshima M, Senba Y, Ohashi H, Wikfeldt KT, Nilsson A, Pettersson LGM, Shin S. Phys Rev Lett, 2013, 111: 193001 CrossRef PubMed ADS Google Scholar

[72] Rozenberg M, Loewenschuss A, Marcus Y. Phys Chem Chem Phys, 2000, 2: 2699-2702 CrossRef ADS Google Scholar

[73] Fang W, Chen J, Rossi M, Feng Y, Li XZ, Michaelides A. J Phys Chem Lett, 2016, 7: 2125-2131 CrossRef PubMed Google Scholar

[74] Ubbelohde AR, Gallagher KJ. Acta Cryst, 1955, 8: 71-83 CrossRef Google Scholar

[75] Schoch RB, Han J, Renaud P. Rev Mod Phys, 2008, 80: 839-883 CrossRef ADS Google Scholar

[76] Guo W, Tian Y, Jiang L. Acc Chem Res, 2013, 46: 2834-2846 CrossRef PubMed Google Scholar

[77] Whitby M, Quirke N. Nat Nanotech, 2007, 2: 87-94 CrossRef PubMed ADS Google Scholar

[78] Sipilä M, Sarnela N, Jokinen T, Henschel H, Junninen H, Kontkanen J, Richters S, Kangasluoma J, Franchin A, Peräkylä O, Rissanen MP, Ehn M, Vehkamäki H, Kurten T, Berndt T, Petäjä T, Worsnop D, Ceburnis D, Kerminen VM, Kulmala M, O'Dowd C. Nature, 2016, 537: 532-534 CrossRef PubMed ADS Google Scholar

[79] Klimeš J, Bowler DR, Michaelides A. J Chem Phys, 2013, 139: 234702 CrossRef PubMed ADS arXiv Google Scholar

[80] Cohen-Tanugi D, Grossman JC. Nano Lett, 2012, 12: 3602-3608 CrossRef PubMed ADS Google Scholar

[81] Payandeh J, Scheuer T, Zheng N, Catterall WA. Nature, 2011, 475: 353-358 CrossRef PubMed Google Scholar

[82] Gouaux E, Mackinnon R. Science, 2005, 310: 1461-1465 CrossRef PubMed ADS Google Scholar

[83] Peng J, Cao D, He Z, Guo J, Hapala P, Ma R, Cheng B, Chen J, Xie WJ, Li XZ, Jelínek P, Xu LM, Gao YQ, Wang EG, Jiang Y. Nature, 2018, 557: 701-705 CrossRef PubMed ADS Google Scholar

[84] Carrillo-Tripp M, Saint-Martin H, Ortega-Blake I. J Chem Phys, 2003, 118: 7062-7073 CrossRef ADS Google Scholar

[85] Shiotari A, Okuyama H, Hatta S, Aruga T, Hamada I. Phys Chem Chem Phys, 2018, 20: 12210-12216 CrossRef PubMed ADS Google Scholar

[86] Finlayson-Pitts BJ. Chem Rev, 2003, 103: 4801-4822 CrossRef PubMed Google Scholar

[87] Finlayson-Pitts BJ, Hemminger JC. J Phys Chem A, 2000, 104: 11463-11477 CrossRef ADS Google Scholar

[88] Simpson WR, von Glasow R, Riedel K, Anderson P, Ariya P, Bottenheim J, Burrows J, Carpenter LJ, Frieß U, Goodsite ME, Heard D, Hutterli M, Jacobi HW, Kaleschke L, Neff B, Plane J, Platt U, Richter A, Roscoe H, Sander R, Shepson P, Sodeau J, Steffen A, Wagner T, Wolff E. Atmos Chem Phys, 2007, 7: 4375-4418 CrossRef Google Scholar

[89] Pegram LM, Wendorff T, Erdmann R, Shkel I, Bellissimo D, Felitsky DJ, Record Jr. MT. Proc Natl Acad Sci USA, 2010, 107: 7716-7721 CrossRef PubMed ADS Google Scholar

[90] Nangia S, Garrison BJ. J Am Chem Soc, 2009, 131: 9538-9546 CrossRef PubMed Google Scholar

[91] Peng J, Guo J, Ma R, Meng X, Jiang Y. J Phys-Condens Matter, 2017, 29: 104001 CrossRef PubMed ADS Google Scholar

[92] Taylor DP, Hess WP, McCarthy MI. J Phys Chem B, 1997, 101: 7455-7463 CrossRef Google Scholar

[93] Fisher GB, Sexton BA. Phys Rev Lett, 1980, 44: 683-686 CrossRef ADS Google Scholar

[94] Nagasaka M, Kondoh H, Ohta T. J Chem Phys, 2005, 122: 204704 CrossRef PubMed ADS Google Scholar

[95] Forster M, Raval R, Carrasco J, Michaelides A, Hodgson A. Chem Sci, 2012, 3: 93-102 CrossRef Google Scholar

[96] Clay C, Haq S, Hodgson A. Chem Phys Lett, 2004, 388: 89-93 CrossRef ADS Google Scholar

[97] Gladys MJ, Mikkelsen A, Andersen JN, Held G. Chem Phys Lett, 2005, 414: 311-315 CrossRef ADS Google Scholar

[98] Wendt S, Matthiesen J, Schaub R, Vestergaard EK, Laegsgaard E, Besenbacher F, Hammer B. Phys Rev Lett, 2006, 96: 066107 CrossRef PubMed ADS Google Scholar

[99] Adhikari S, Garcia-Castro AC, Romero AH, Lee H, Lee JW, Ryu S, Eom CB, Cen C. Adv Funct Mater, 2016, 26: 5453-5459 CrossRef Google Scholar

[100] Brookes IM, Muryn CA, Thornton G. Phys Rev Lett, 2001, 87: 266103 CrossRef PubMed ADS Google Scholar

[101] Dohnálek Z, Lyubinetsky I, Rousseau R. Prog Surf Sci, 2010, 85: 161-205 CrossRef ADS Google Scholar

[102] Bikondoa O, Pang CL, Ithnin R, Muryn CA, Onishi H, Thornton G. Nat Mater, 2006, 5: 189-192 CrossRef ADS Google Scholar

[103] Mu R, Cantu DC, Lin X, Glezakou VA, Wang Z, Lyubinetsky I, Rousseau R, Dohnálek Z. J Phys Chem Lett, 2014, 5: 3445-3450 CrossRef PubMed Google Scholar

[104] Rim KT, Eom D, Chan SW, Flytzani-Stephanopoulos M, Flynn GW, Wen XD, Batista ER. J Am Chem Soc, 2012, 134: 18979-18985 CrossRef PubMed Google Scholar

[105] Halwidl D, Stöger B, Mayr-Schmölzer W, Pavelec J, Fobes D, Peng J, Mao Z, Parkinson GS, Schmid M, Mittendorfer F, Redinger J, Diebold U. Nat Mater, 2016, 15: 450-455 CrossRef PubMed ADS arXiv Google Scholar

[106] Algara-Siller G, Lehtinen O, Wang FC, Nair RR, Kaiser U, Wu HA, Geim AK, Grigorieva IV. Nature, 2015, 519: 443-445 CrossRef PubMed ADS arXiv Google Scholar

[107] Radha B, Esfandiar A, Wang FC, Rooney AP, Gopinadhan K, Keerthi A, Mishchenko A, Janardanan A, Blake P, Fumagalli L, Lozada-Hidalgo M, Garaj S, Haigh SJ, Grigorieva IV, Wu HA, Geim AK. Nature, 2016, 538: 222-225 CrossRef PubMed ADS arXiv Google Scholar

[108] Mochizuki K, Koga K. Proc Natl Acad Sci USA, 2015, 112: 8221-8226 CrossRef PubMed ADS Google Scholar

[109] Fumagalli L, Esfandiar A, Fabregas R, Hu S, Ares P, Janardanan A, Yang Q, Radha B, Taniguchi T, Watanabe K, Gomila G, Novoselov KS, Geim AK. Science, 2018, 360: 1339-1342 CrossRef PubMed ADS arXiv Google Scholar

[110] Xu K, Cao P, Heath JR. Science, 2010, 329: 1188-1191 CrossRef PubMed ADS Google Scholar

[111] Kurotobi K, Murata Y. Science, 2011, 333: 613-616 CrossRef PubMed ADS Google Scholar

[112] Zhang R, Murata M, Aharen T, Wakamiya A, Shimoaka T, Hasegawa T, Murata Y. Nat Chem, 2016, 8: 435-441 CrossRef PubMed ADS Google Scholar

[113] Walch H, Dienstmaier J̈, Eder G, Gutzler R, Schlögl S, Sirtl T, Das K, Schmittel M, Lackinger M. J Am Chem Soc, 2011, 133: 7909-7915 CrossRef PubMed Google Scholar

[114] Gething MJ, Sambrook J. Nature, 1992, 355: 33-45 CrossRef PubMed ADS Google Scholar

[115] Dobson CM. Nature, 2003, 426: 884-890 CrossRef PubMed ADS Google Scholar

[116] Benkovic SJ, Hammes-Schiffer S. Science, 2003, 301: 1196-1202 CrossRef PubMed ADS Google Scholar

[117] Hinterdorfer P, Dufrêne YF. Nat Meth, 2006, 3: 347-355 CrossRef PubMed Google Scholar

[118] Knepper MA, Nielsen S. J Am Soc Nephrol, 2004, 15: 1093-1095 CrossRef Google Scholar

[119] Grinolds MS, Maletinsky P, Hong S, Lukin MD, Walsworth RL, Yacoby A. Nat Phys, 2011, 7: 687-692 CrossRef ADS arXiv Google Scholar

[120] Maletinsky P, Hong S, Grinolds MS, Hausmann B, Lukin MD, Walsworth RL, Loncar M, Yacoby A. Nat Nanotech, 2012, 7: 320-324 CrossRef PubMed ADS arXiv Google Scholar

[121] Yoshida S, Aizawa Y, Wang ZH, Oshima R, Mera Y, Matsuyama E, Oigawa H, Takeuchi O, Shigekawa H. Nat Nanotech, 2014, 9: 588-593 CrossRef PubMed ADS Google Scholar

[122] Cocker TL, Jelic V, Gupta M, Molesky SJ, Burgess JAJ, Reyes GDL, Titova LV, Tsui YY, Freeman MR, Hegmann FA. Nat Photon, 2013, 7: 620-625 CrossRef ADS Google Scholar

[123] Cocker TL, Peller D, Yu P, Repp J, Huber R. Nature, 2016, 539: 263-267 CrossRef PubMed ADS Google Scholar

  • Figure 1

    Schematics of the atomic structure of water molecule and the hydrogen bonds between water molecules. (a) Atomic structure and charge distribution of water molecule; (b) hydrogen bonds between water molecules (color online).

  • Figure 2

    STM images of water monomer and tetramer on NaCl(001). (a) Schematic of the experimental setup (the blue double arrows represent the coupling between the tip and water molecule); (b) projected density of states of water on NaCl(001) with and without the tip; (c, d) STM images of HOMO and LUMO of water, respectively; (e, f) top and side views of water adsorbed on NaCl(001) surface, respectively; (g, h) STM images (HOMO) of water tetramers with different chiralities, respectively. (i, j) orbital images by DFT which correspond to (g) and (h), respectively [23] (color online).

  • Figure 3

    Noncontact AFM images of water tetramer. (a) Schematic of qPlus AFM sensor. Bottom: charge distribution of the CO-tip. (b, c) and (d, e) are the electrostatic potential images and AFM images of two water tetramers with different chiralities, respectively. (f) The electrostatic potential images, AFM images and simulated AFM images of the water dimer, respectively. The positions of O and H atoms are indicated by the yellow arrows and black curves, respectively [24] (color online).

  • Figure 4

    Tip enhanced IETS of single water molecule. (a) Schematic of the experiment setup. Single water (D2O) adsorbes vertically on the NaCl(001)/Au(111). O, D, Au, Cl, and Na+ are denoted by red, white, golden, green, and purple spheres, respectively. (b) Schematic of the tip enhanced IETS. (c) dI/dV and d2I/dV2 spectra taken at different tip heights. Red (–1.2 Å) and blue (–0.4 Å) curves were taken on the D2O monomer. Gray curves (–1.2 Å) were acquired on the NaCl surface (denoted as “bkgd”). The vibrational IET features are denoted as “R” (rotational), “B” (bending), and “S” (stretching) [34] (color online).

  • Figure 5

    Imaging and models of four types of water clusters. (a) Type-I, tetramer; (b) type-II, double tetramer; (c) type-III, triple tetramer; (d) type-IV, quadruple tetramer. Left: STM topographies of the water nanoclusters acquired at 5 K. Set points are: (a) V=20 mV, I=50 pA; (b) V=7 mV, I=550 pA; (c) V=6 mV, I=400 pA; (d) V=5 mV, I=120 pA. Middle and right: top and side views, respectively, of the calculated adsorption configurations of the water clusters [46] (color online).

  • Figure 6

    Submolecular AFM images of weakly bonded water dimers (a–d) and trimers (e–h). From top to bottom: atomic models, STM imges, AFM images and simulated AFM images [24] (color online).

  • Figure 7

    2D ice grown on NaCl(001). (a) STM image of 2D ice grown on NaCl(001). Scanning conditions: T=77 K, V=400 mV, I=10 pA. (b) Zoom-in STM image of 2D ice. Scanning conditions: T=77 K, V=350 mV, I=10 pA. (c) Schematic model of the 2D tetragonal bilayer ice, corresponding to (b). The red solid squares denote the water tetramers and the yellow spheres denote the bridging water molecules [46] (color online).

  • Figure 8

    Chirality switching of a H2O tetramer. (A) Schematic showing manipulation of the chirality of the tetramer by a Cl-terminated tip. (a) The tetramer stays in the clockwise state (CS) when the tip is far away from the tetramer (gap set with V=5 mV and I=5 pA); (b) reducing the tip height by 230 pm leads to chirality switching; (c) lifting the tip back to the initial height leaves the tetramer in the anticlockwise state (AS). (B) Tunnelling current trace recorded during the chirality manipulation shown in (A). The low and high current levels correspond to CS and AS, respectively. Insets: adsorption configuration (upper) and STM images (lower) of CS (left) and AS (right) tetramers, respectively. Parameters for the STM images: V=20 mV and I=150 pA. The green stars in the STM images denote the tip position where the current trace is acquired [61] (color online).

  • Figure 9

    Nuclear quantum effects on H-bonding strength between HOD monomers and Cl. (a) Schematic of the water (HOD) adsorbed on NaCl. (b) High-resolution IETS showing the streching mode of HOD. (c) Ratio between the frequency (ν) of H1 and D1 as a function of tip height for three different HOD monomers. The ratio increases in area I, decreases in area II and finally reverses in area III. The ratio (1.361) between the frequency of the free OH and OD stretching modes is denoted by a horizontal dashed line. (d) Relative difference between H-bond energies of O–H···Cl (EH) and O–D···Cl (ED) as a function of their average. Red, blue and black data points which are from three different HOD molecules show the same tendency [34] (color online).

  • Figure 10

    Geometries and high-resolution STM/AFM images of Na+ hydrates. (a–e) The atomic models (the first column shows the side view; the second column shows the top view), STM and AFM images (acquired with a CO tip) and AFM simulations of Na+nD2O clusters (n = 1–5), respectively. H, O, Cl, Na and Au atoms are denoted as white, red, green, purple and yellow spheres, respectively. The color of Na+ in the hydrates is adjusted darker to distinguish with Na+ in the substrate. The set points of the STM images are: (a) V=100 mV, I=20 pA; (b) V=150 mV, I=30 pA; (c) V=100 mV, I=30 pA; (d) V=100 mV, I=50 pA; (e) V=100 mV, I=15 pA, respectively. All the AFM simulations were done with a quadrupole tip (k=0.75 N/m, Q=−0.2e). The sizes of images are 1.5 nm×1.5 nm [83] (color online).

  • Figure 11

    Magic number effect on the Na+ ion transport on NaCl surface. (a) Schematic diagram of the inelastic electron excitation of the Na+ hydrates and the corresponding current curve; (b) comparison of Veff of different ion hydrates at a lateral distance of d×the lattice constant of NaCl(001) (d=2, 3, 4); (c) calculated diffusion barrier of Na+nD2O (n=1–5) by DFT; (d) mean-square displacements (MSD) in 1 ns of Na+nH2O (n=1–5) between 225 and 300 K by molecular dynamics simulation [83] (color online).

  • Figure 12

    The initial dissolution stage and decomposition of bilayer NaCl islands covered by a 2D ice overlayer. (a) STM image of a bilayer NaCl island covered by a 2D ice overlayer. (b) Zoom-in STM image of the region denoted by a blue dashed square in (a). It shows a regular array of paired protrusions (with one highlighted by a blue dotted ellipse). (c) STM image of the same sample after being heating to 145 K for 20 min. The arrows highlight the “cloud” features. (d) STM image scanned at 77 K after heating up the sample to 155 K for 20 min. The ice overlayer was completely desorbed, leading to the formation of the triple-layer NaCl and exposure of the bare Au substrate. Step edges of the Au (111) surface are highlighted by white dotted lines. (e) Schematic drawing of the NaCl decomposition upon the desorption of the ice overlayer. (f) Schematic potential energy landscape of the transition between bilayer and triple-layer NaCl without (solid) and with (dotted) water molecules. Set points are: (a) V=200 mV and I=10 pA; (b) V=200 mV and I=10 pA; (c) V=100 mV and I=10 pA; (d) V=200 mV and I=10 pA. The sizes are: (a) 52 nm×52 nm; (b) 8 nm×8 nm; (c) 31 nm×31 nm; (d) 50 nm×50 nm [91] (color online).

  • Figure 13

    STM images of TiO2(110) surface. (a) The blue crosses denote Ad defects that are also present in (b), the red circles denote Ab defects and the yellow circles denote Ab defects that are removed to form the image in (b). The black rectangle indicates the area where the second high-voltage scan will occur. (b) Following a 3 V scan. The yellow lines indicate the approximate boundaries beneath which the 3 V scan was applied. Blue crosses and red circles denote Ad and Ab defects, respectively. (c) Following exposure to 0.1 L water. Blue crosses and filled red circles denote Ad and Ab defects, respectively, which were present in (b). Open red circles indicate positions where Ab defects were present in (b) but not in (c). Red crosses denote new Ab species that reside where Ad defects were positioned in (b) and black crosses denote new Ab species appearing elsewhere. (d) Following another 3 V scan. The rectangle indicates the region of the second high-voltage scan. Blue and black crosses denote Ad and Ab defects, respectively [102] (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1