SCIENTIA SINICA Chimica, Volume 49 , Issue 3 : 480-491(2019) https://doi.org/10.1360/N032018-00187

Aperiodic ordered surface structures investigated by scanning tunneling microscopy

More info
  • ReceivedAug 20, 2018
  • AcceptedNov 22, 2018
  • PublishedJan 17, 2019


In recent years, much progress has been made in aperiodic ordered surface structures such as fractal and quasicrystal that can be synthesized by molecular self-assembly. Here we review the research progress of Sierpiński triangle fractal structures and quasicrystal structures on metal surfaces investigated by scanning tunneling microscopy. Constructions of Sierpiński triangle fractals with halogen, hydrogen, coordination and covalent bonds were realized on different basal surfaces via changing the precursor types, and complete fifth-order fractals were successfully prepared by a combination of the templating and co-assembly methods overcoming the surface kinetic limitations. Surface molecular quasicrystals were fabricated by utilizing the hydrogen bond between carboxylic acid groups through molecular self-assembly for the first time, and metal-organic coordination quasicrystals were successfully prepared by the coordination between organic molecule and rare-earth atoms.

Funded by



[1] Binning G, Rohrer H, Gerber C, Weibel E. Phys Rev Lett, 1982, 49: 57-61 CrossRef ADS Google Scholar

[2] Gimzewski JK, Joachim C. Science, 1999, 283: 1683-1688 CrossRef ADS Google Scholar

[3] Ye Y, Sun W, Wang Y, Shao X, Xu X, Cheng F, Li J, Wu K. J Phys Chem C, 2007, 111: 10138-10141 CrossRef Google Scholar

[4] Yokoyama T, Kamikado T, Yokoyama S, Mashiko S. J Chem Phys, 2004, 121: 11993-11997 CrossRef PubMed ADS Google Scholar

[5] Yokoyama T, Yokoyama S, Kamikado T, Okuno Y, Mashiko S. Nature, 2001, 413: 619-621 CrossRef PubMed Google Scholar

[6] Schlickum U, Decker R, Klappenberger F, Zoppellaro G, Klyatskaya S, Ruben M, Silanes I, Arnau A, Kern K, Brune H, Barth JV. Nano Lett, 2007, 7: 3813-3817 CrossRef PubMed ADS Google Scholar

[7] Cyr DM, Venkataraman B, Flynn GW. Chem Mater, 1996, 8: 1600-1615 CrossRef Google Scholar

[8] Newkome GR, Wang P, Moorefield CN, Cho TJ, Mohapatra PP, Li S, Hwang SH, Lukoyanova O, Echegoyen L, Palagallo JA, Iancu V, Hla SW. Science, 2006, 312: 1782-1785 CrossRef PubMed ADS Google Scholar

[9] Shang J, Wang Y, Chen M, Dai J, Zhou X, Kuttner J, Hilt G, Shao X, Gottfried JM, Wu K. Nat Chem, 2015, 7: 389-393 CrossRef PubMed ADS Google Scholar

[10] Newkome GR, Shreiner C. Chem Rev, 2010, 110: 6338-6442 CrossRef PubMed Google Scholar

[11] Sarkar R, Guo K, Moorefield CN, Saunders MJ, Wesdemiotis C, Newkome GR. Angew Chem Int Ed, 2014, 53: 12182-12185 CrossRef PubMed Google Scholar

[12] Wasio NA, Quardokus RC, Forrest RP, Lent CS, Corcelli SA, Christie JA, Henderson KW, Kandel SA. Nature, 2014, 507: 86-89 CrossRef PubMed ADS Google Scholar

[13] Zhang X, Li N, Gu GC, Wang H, Nieckarz D, Szabelski P, He Y, Wang Y, Xie C, Shen ZY, Lü JT, Tang H, Peng LM, Hou SM, Wu K, Wang YF. ACS Nano, 2015, 9: 11909-11915 CrossRef Google Scholar

[14] Li N, Zhang X, Gu GC, Wang H, Nieckarz D, Szabelski P, He Y, Wang Y, Lü JT, Tang H, Peng LM, Hou SM, Wu K, Wang YF. Chin Chem Lett, 2015, 26: 1198-1202 CrossRef Google Scholar

[15] Gu G, Li N, Liu L, Zhang X, Wu Q, Nieckarz D, Szabelski P, Peng L, Teo BK, Hou S, Wang Y. RSC Adv, 2016, 6: 66548-66552 CrossRef Google Scholar

[16] Li N, Gu G, Zhang X, Song D, Zhang Y, Teo BK, Peng LM, Hou S, Wang Y. Chem Commun, 2017, 53: 3469-3472 CrossRef PubMed Google Scholar

[17] Li C, Zhang X, Li N, Wang Y, Yang J, Gu G, Zhang Y, Hou S, Peng L, Wu K, Nieckarz D, Szabelski P, Tang H, Wang Y. J Am Chem Soc, 2017, 139: 13749-13753 CrossRef PubMed Google Scholar

[18] Förster S, Meinel K, Hammer R, Trautmann M, Widdra W. Nature, 2013, 502: 215-218 CrossRef PubMed ADS Google Scholar

[19] Urgel JI, Écija D, Lyu G, Zhang R, Palma CA, Auwärter W, Lin N, Barth JV. Nat Chem, 2016, 8: 657-662 CrossRef PubMed ADS Google Scholar

[20] Mandelbrot BB, Wheeler JA. Am J Phys, 1983, 51: 286-287 CrossRef ADS Google Scholar

[21] Nieckarz D, Szabelski P. Chem Commun, 2014, 50: 6843-6845 CrossRef PubMed Google Scholar

[22] Gu GC, Li N, Zhang X, Hou SM, Wang YF, Wu K. Acta Phys-Chim Sin, 2016, 32: 195–200. Google Scholar

[23] Liu XH, Guan CZ, Wang D, Wan LJ. Adv Mater, 2014, 26: 6912-6920 CrossRef PubMed Google Scholar

[24] Yu Y, Sun J, Lei S. J Phys Chem C, 2015, 119: 16777-16784 CrossRef Google Scholar

[25] Xu L, Zhou X, Yu Y, Tian WQ, Ma J, Lei S. ACS Nano, 2013, 7: 8066-8073 CrossRef PubMed Google Scholar

[26] Jiang L, Papageorgiou AC, Oh SC, Sağlam Ö, Reichert J, Duncan DA, Zhang YQ, Klappenberger F, Guo Y, Allegretti F, More S, Bhosale R, Mateo-Alonso A, Barth JV. ACS Nano, 2016, 10: 1033-1041 CrossRef Google Scholar

[27] Zhang X, Li R, Li N, Gu G, Zhang Y, Hou S, Wang Y. Chin Chem Lett, 2017, 29: 967-969 CrossRef Google Scholar

[28] Zhang X, Li N, Liu L, Gu G, Li C, Tang H, Peng L, Hou S, Wang Y. Chem Commun, 2016, 52: 10578-10581 CrossRef PubMed Google Scholar

[29] Alemani M, Selvanathan S, Ample F, Peters MV, Rieder KH, Moresco F, Joachim C, Hecht S, Grill L. J Phys Chem C, 2008, 112: 10509-10514 CrossRef Google Scholar

[30] Trembulowicz A, Ehrlich G, Antczak G. Phys Rev B, 2011, 84: 245445 CrossRef ADS Google Scholar

[31] Levine D, Steinhardt PJ. Phys Rev Lett, 1984, 53: 2477-2480 CrossRef ADS Google Scholar

[32] Shechtman D, Blech I, Gratias D, Cahn JW. Phys Rev Lett, 1984, 53: 1951-1953 CrossRef ADS Google Scholar

[33] Bindi L, Steinhardt PJ, Yao N, Lu PJ. Science, 2009, 324: 1306-1309 CrossRef PubMed ADS Google Scholar

[34] Fischer S, Exner A, Zielske K, Perlich J, Deloudi S, Steurer W, Lindner P, Förster S. Proc Natl Acad Sci USA, 2011, 108: 1810-1814 CrossRef PubMed ADS Google Scholar

[35] Talapin DV, Shevchenko EV, Bodnarchuk MI, Ye X, Chen J, Murray CB. Nature, 2009, 461: 964-967 CrossRef PubMed ADS Google Scholar

[36] Zhong D, Wedeking K, Blömker T, Erker G, Fuchs H, Chi L. ACS Nano, 2010, 4: 1997-2002 CrossRef PubMed Google Scholar

[37] Nishio M. Phys Chem Chem Phys, 2011, 13: 13873-13900 CrossRef PubMed ADS Google Scholar

[38] Dotera T, Oshiro T, Ziherl P. Nature, 2014, 506: 208-211 CrossRef PubMed ADS Google Scholar

  • Figure 1

    (a) Sierpiński hexagonal fractal structure. (b) Image of the snakelike “Kolam” pattern. (c) The 1→3 branching pattern of a tree [8] (color online).

  • Figure 2

    Images of Sierpiński hexagon fractal structures measured by AFM (a), TEM (b), and STM (c) [8] (color online).

  • Figure 3

    STM images of covalently bonded Sierpiński triangles with the order from 0 to 2 (a, c and e) and their molecular models (b, d and f) [15] (color online).

  • Figure 4

    (a) Coexistence of Sierpiński triangles and 2D crystals on Au(111). (b) Quasi 1D molecular wires. (c) 2D crystalline patterns. (d, e) DFT-optimized heterotactic and homotactic molecular tetramer models observed in STM images. (f) Influence of surface coverages on the relative abundance of Sierpiński triangles and 2D crystals [13] (color online).

  • Figure 5

    (a) Self-assembled structure of QPDCN on Au(111). (b) Molecular models overlaid on the magnified STM image. (c, d) High-resolution STM images of STs composed of QPDCN molecules and Co atoms on Au(111) and their molecular models (e, f). The two different types of three-fold coordination nodes are marked by ① and ② [27] (color online).

  • Figure 6

    (a) Mapping of the components of the metal-organic self-assembly onto a triangular lattice representing the Au(111) surface. (b) Snapshot of the metal-organic overlayer adsorbed on a triangular lattice. (c) Temperature dependence of the relative abundance of metal coordination centers with a given number (0--3) of attached linker molecules. (d) Number of hexagonal pores occurring in the aggregates and the corresponding specific heat plotted as functions of temperature [14] (color online).

  • Figure 7

    H3PH molecules could grow to form H-bonded STs only on Ag(111), not on Ag(100) H3PH molecules and Fe atoms formed STs on both Ag(111) and Ag(100) surfaces [28] (color online).

  • Figure 8

    (a, b) STM images and models of double-chain of STs of the first order (DCT-1). (c, d) Topography and model of DCT-2. The white arrows in STM images indicate the surface [011] direction. (e) The longest DCT-2, which includes 22 repeating units. (f) Illustration of the typical hierarchically self-assembling process [16] (color online).

  • Figure 9

    (a, b) STs up to the fifth order on Au(100). The white arrow indicates the surface [011] direction [17] (color online).

  • Figure 10

    (a) STM images of ferrocenecarboxylic acid (FcCOOH) monolayer quasicrystal structure. (b) Penrose tiling. (c) Two-dimensional Fourier transform. (d) Two-dimensional spatial correlation function Quasicrystal structure formed by ferrocenecarboxylic acid and the Penrose tiling [12] (color online).

  • Figure 11

    (a) Calculated energies for FcCOOH dimers as a function of bond angle. (b) Minimum-energy structure of (FcCOOH)5 calculated by DFT. (c) Proposed structures for FcCOOH dimers and pentamers [12] (color online).

  • Figure 12

    Eu-directed assembly of metal-organic coordination networks on Au(111). (a) The para-quaterphenyl-dicarbonitrile (qdc) molecule. (b–e) High-resolution STM images of the distinct coordination networks designed at varying Eu:linker stoichiometries, 2:3 (b), 2:4 (c), 2:5 (d) and 2:6 (e). (f–i) Atomistic models of (b~e) highlighting the distinct coordination nodes that stabilize the assemblies: three-fold (f), four-fold (g), five-fold (h) and six-fold (i) [19] (color online).

  • Figure 13

    (a) STM image of dodecagonal random-tiling quasicrystal. (b) Ball-and-stick model of (a). (c) Two-dimensional fast Fourier transform of (b). (d) Ideal fast Fourier transform of a dodecagonal random-tiling quasicrystal. (e) Radial distribution function of the metal nodes in (b) [19] (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号