logo

SCIENTIA SINICA Chimica, Volume 49, Issue 4: 597-606(2019) https://doi.org/10.1360/N032018-00196

Controllable release of volatile aldehydes from polyhedral oligomeric silsesquioxane-based pro-fragrances

More info
  • ReceivedAug 23, 2018
  • AcceptedSep 13, 2018
  • PublishedJan 18, 2019

Abstract

In the area of functional flavors and fragrances, the effective aroma and fragrance lasting are long-term challenges. To achieve this goal, an effective way is forming and cutting-off fragile covalent bonds of pro-fragrances along with controlled release of fragrances. We here report a new family of nanocarrier-based pro-fragrances, which have a high affinity to silk textiles and papers. The new pro-fragrances were prepared by using polyhedral oligomeric silsesquioxane (POSS) with perfume aldehydes, in which the formed acetal group as a linker that serves to bind the fragrance molecules allowed slow release of aldehyde molecules via hydrolysis reactions. The controllable release of volatile aldehydes was investigated in aqueous suspensions by headspace solid-phase micro-extraction analysis in combination with gas chromatography. The results show that the release of fragrances from this pro-fragrance system with headspace concentrations are 5–10 times slower than the free aldehydes.


Funded by

国家重点基础研究发展计划(2016YFA0200302)


Acknowledgment

本工作在上海应用技术大学香料香精技术与工程学院测试中心、上海市香料研究所和华东理工大学分析测试中心进行测试, 在此一并致谢.


References

[1] Xiao Z, Zhang Y, Zhu G, Zhou R, Niu Y. Prog Org Coat, 2017, 104: 50-57 CrossRef Google Scholar

[2] Yang Z, Zeng Z, Xiao Z, Ji H. Flavour Fragr J, 2014, 29: 114-120 CrossRef Google Scholar

[3] Wang M, Fu H, She Y, Xiao Z, Zhu G, Hu J. Polym Compos, 2015, 36: 2093-2102 CrossRef Google Scholar

[4] Erkan G, Sariişik M, Pazarlioğlu NK. J Appl Polym Sci, 2010, 118: 3707-3714 CrossRef Google Scholar

[5] Trachsel A, Chapuis C, Herrmann A. Flavour Fragr J, 2013, 28: 280-293 CrossRef Google Scholar

[6] Zeng Z, Fang Y, Ji H. Flavour Fragr J, 2012, 27: 378-385 CrossRef Google Scholar

[7] Yang Z, Yao X, Xiao Z, Chen H, Ji H. Flavour Fragr J, 2016, 31: 206-216 CrossRef Google Scholar

[8] Xiao Z, Wang E, Zhu G, Zhou R, Niu Y. Polish J Chem Tech, 2016, 18: 1-8 CrossRef Google Scholar

[9] Xiao Z, Li W, Zhu G, Zhou R, Niu Y. Flavour Fragr J, 2016, 31: 283-289 CrossRef Google Scholar

[10] Zhu G, Xiao Z, Zhu G. Polym Bull, 2017, 74: 2263-2275 CrossRef Google Scholar

[11] Herrmann A. Angew Chem Int Ed, 2007, 46: 5836-5863 CrossRef PubMed Google Scholar

[12] Herrmann A. Eur J Org Chem, 2003, 6: 967--971. Google Scholar

[13] Herrmann A. Photochem Photobiol Sci, 2012, 11: 446-459 CrossRef PubMed Google Scholar

[14] Derrer S, Flachsmann F, Plessis C, Stang M. Chimia, 2007, 61: 665-669 CrossRef Google Scholar

[15] Schilling B, Kaiser R, Natsch A, Gautschi M. Chemoecology, 2010, 20: 135-147 CrossRef Google Scholar

[16] Rataj V, Ruyffelaere F. Cah Formul, 2005, 12: 82–96. Google Scholar

[17] Gunaratne HQN, Nockemann P, Seddon KR. Chem Commun, 2015, 51: 4455-4457 CrossRef PubMed Google Scholar

[18] Levrand B, Fieber W, Lehn JM, Herrmann A. Helv Chim Acta, 2007, 90: 2281-2314 CrossRef Google Scholar

[19] Godin G, Levrand B, Trachsel A, Lehn JM, Herrmann A. Chem Commun, 2010, 46: 3125-3127 CrossRef PubMed Google Scholar

[20] Trachsel A, Buchs B, Herrmann A. Photochem Photobiol Sci, 2016, 15: 1183-1203 CrossRef PubMed Google Scholar

[21] Berthier DL, Paret N, Trachsel A, Herrmann A. Bioconjugate Chem, 2010, 21: 2000-2012 CrossRef PubMed Google Scholar

[22] Kamogawa H, Mukai H, Nakajima Y, Nanasawa M. J Polym Sci Polym Chem Ed, 1982, 20: 3121-3129 CrossRef ADS Google Scholar

[23] Berthier D, Trachsel A, Fehr C, Ouali L, Herrmann A. Helv Chim Acta, 2005, 88: 3089-3108 CrossRef Google Scholar

[24] Morinaga H, Morikawa H, Wang Y, Sudo A, Endo T. Macromolecules, 2009, 42: 2229-2235 CrossRef ADS Google Scholar

[25] Trachsel A, de Saint Laumer JY, Haefliger OP, Herrmann A. Chem Eur J, 2009, 15: 2846-2860 CrossRef PubMed Google Scholar

[26] Wang Y, Morinaga H, Sudo A, Endo T. J Polym Sci A Polym Chem, 2010, 48: 3816-3822 CrossRef ADS Google Scholar

[27] Morinaga H, Morikawa H, Sudo A, Endo T. J Polym Sci A Polym Chem, 2010, 48: 4529-4536 CrossRef ADS Google Scholar

[28] Berthier D, Paret N, Trachsel A, Fieber W, Herrmann A. Polymers, 2013, 5: 234-253 CrossRef Google Scholar

[29] Eisenberg P, Erra-Balsells R, Ishikawa Y, Lucas JC, Nonami H, Williams RJJ. Macromolecules, 2002, 35: 1160-1174 CrossRef ADS Google Scholar

[30] Paul DR, Robeson LM. Polymer, 2008, 49: 3187-3204 CrossRef Google Scholar

[31] Zhang Z, Liang G, Wang J, Ren P. Polym Compos, 2007, 28: 175-179 CrossRef Google Scholar

[32] Carosio F, Di Pierro A, Alongi J, Fina A, Saracco G. J Colloid Interface Sci, 2018, 510: 142-151 CrossRef PubMed ADS Google Scholar

[33] Pi P, Hou K, Wen X, Xu S, Cheng J, Xu G, Wang S. Prog Org Coat, 2016, 101: 522-529 CrossRef Google Scholar

[34] Carvalho PN, Pinto LF, Basto MCP, Vasconcelos MTSD. Microchem J, 2007, 87: 147-153 CrossRef Google Scholar

[35] Carro AM, González P, Fajar N, Lorenzo RA, Cela R. Anal Bioanal Chem, 2009, 394: 893-901 CrossRef PubMed Google Scholar

[36] Xiao Z, Zhou X, Niu Y, Yu D, Zhu J, Zhu G. J Chromatogr B, 2015, 978-979: 122-130 CrossRef PubMed Google Scholar

[37] Sales JA, de Lourdes Cardeal Z. Food Addit Contam, 2003, 20: 519-523 CrossRef PubMed Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1