logo

SCIENTIA SINICA Chimica, Volume 49, Issue 5: 787-800(2019) https://doi.org/10.1360/N032018-00199

Recent advances of single molecule/particle imaging with optical microscopic methods

More info
  • ReceivedAug 27, 2018
  • AcceptedSep 13, 2018
  • PublishedOct 30, 2018

Abstract

Single-molecule and -particle imaging with optical microscopic methods have been widely used in various fields with the advantages of high resolution, high throughput and excellent sensitivity. This review summarized recent progresses of optical microscopic imaging of single-molecule and -particle in the areas of molecular detection, super-resolution imaging and single-particle catalysis. At last, we outlined the challenges and prospect of optical microscopic imaging techniques for single-molecule and -particle assay in biomedical applications.


Funded by

国家自然科学基金(21522502)


References

[1] Li H, Guo Y, Xiao L, Chen B. Analyst, 2014, 139: 285-289 CrossRef PubMed ADS Google Scholar

[2] Li J, Mo L, Lu CH, Fu T, Yang HH, Tan W. Chem Soc Rev, 2016, 45: 1410-1431 CrossRef PubMed Google Scholar

[3] Zhang D, Wei L, Zhong M, Xiao L, Li HW, Wang J. Chem Sci, 2018, 9: 5260-5269 CrossRef PubMed Google Scholar

[4] Li T, Wu X, Liu F, Li N. Analyst, 2017, 142: 248-256 CrossRef PubMed Google Scholar

[5] Zhu L, Li G, Sun S, Tan H, He Y. RSC Adv, 2017, 7: 27595-27602 CrossRef Google Scholar

[6] Xu JJ, Zhao WW, Song S, Fan C, Chen HY. Chem Soc Rev, 2014, 43: 1601-1611 CrossRef PubMed Google Scholar

[7] Zhang Z, Zhang C. Anal Chem, 2012, 84: 1623-1629 CrossRef PubMed Google Scholar

[8] Zhou J, Yang Y, Zhang C. Chem Rev, 2015, 115: 11669-11717 CrossRef PubMed Google Scholar

[9] Sönnichsen C, Alivisatos AP. Nano Lett, 2005, 5: 301-304 CrossRef PubMed ADS Google Scholar

[10] Inoué S, Shimomura O, Goda M, Shribak M, Tran PT. Proc Natl Acad Sci USA, 2002, 99: 4272-4277 CrossRef PubMed ADS Google Scholar

[11] Hu K, Zarrine‐Afsar A, Ahmadzadeh H, Krylov SN. Instrum Sci Tech, 2004, 32: 31-41 CrossRef ADS Google Scholar

[12] Molnár E, Kuntam S, Cingaram PKR, Peksel B, Suresh B, Fábián G, Fehér LZ, Bokros A, Medgyesi A, Ayaydin F, Puskás LG. Molecules, 2013, 18: 9999-10013 CrossRef PubMed Google Scholar

[13] Mooney MA, Zehri AH, Georges J, Nakaji P. Neurosurg Focus, 2014, 1: 36. Google Scholar

[14] Teske CA, Schroeder M, Simon R, Hubbuch J. J Phys Chem B, 2005, 109: 13811-13817 CrossRef PubMed Google Scholar

[15] Wang G, Sun W, Luo Y, Fang N. J Am Chem Soc, 2010, 132: 16417-16422 CrossRef PubMed Google Scholar

[16] Wang G, Stender AS, Sun W, Fang N. Analyst, 2010, 135: 215-221 CrossRef PubMed ADS Google Scholar

[17] Gu Y, Sun W, Wang G, Fang N. J Am Chem Soc, 2011, 133: 5720-5723 CrossRef PubMed Google Scholar

[18] Saxton MJ, Jacobson K. Annu Rev Biophys Biomol Struct, 1997, 26: 373-399 CrossRef Google Scholar

[19] Ruthardt N, Lamb DC, Bräuchle C. Mol Ther, 2011, 19: 1199-1211 CrossRef PubMed Google Scholar

[20] Chen T, Dong B, Chen K, Zhao F, Cheng X, Ma C, Lee S, Zhang P, Kang SH, Ha JW, Xu W, Fang N. Chem Rev, 2017, 117: 7510-7537 CrossRef PubMed Google Scholar

[21] Chen P, Zhou X, Andoy NM, Han KS, Choudhary E, Zou N, Chen G, Shen H. Chem Soc Rev, 2014, 43: 1107-1117 CrossRef PubMed Google Scholar

[22] von Diezmann A, Shechtman Y, Moerner WE. Chem Rev, 2017, 117: 7244-7275 CrossRef PubMed Google Scholar

[23] Xiao L, Yeung ES. Annu Rev Anal Chem, 2014, 7: 89-111 CrossRef PubMed ADS Google Scholar

[24] Chen P, Zhou X, Shen H, Andoy NM, Choudhary E, Han KS, Liu G, Meng W. Chem Soc Rev, 2010, 39: 4560-4570 CrossRef PubMed Google Scholar

[25] Zhang CY, Yeh HC, Kuroki MT, Wang TH. Nat Mater, 2005, 4: 826-831 CrossRef ADS Google Scholar

[26] Li H, Guo Y, Xiao L, Chen B. Biosens Bioelectron, 2014, 59: 289-292 CrossRef PubMed Google Scholar

[27] Li Y, Hu X, Ding D, Zou Y, Xu Y, Wang X, Zhang Y, Chen L, Chen Z, Tan W. Nat Commun, 2017, 8: 15653 CrossRef PubMed ADS Google Scholar

[28] Ma Y, Zhang Z, Xu Y, Ma M, Chen B, Wei L, Xiao L. Talanta, 2016, 161: 476-481 CrossRef PubMed Google Scholar

[29] Xu X, Wang L, Li K, Huang Q, Jiang W. Anal Chem, 2018, 90: 3521-3530 CrossRef PubMed Google Scholar

[30] Wang S, Zhang L, Wan S, Cansiz S, Cui C, Liu Y, Cai R, Hong C, Teng IT, Shi M, Wu Y, Dong Y, Tan W. ACS Nano, 2017, 11: 3943-3949 CrossRef Google Scholar

[31] Ye Z, Wei L, Zeng X, Weng R, Shi X, Wang N, Chen L, Xiao L. Anal Chem, 2018, 90: 1177-1185 CrossRef PubMed Google Scholar

[32] Wei L, Ye Z, Xu Y, Chen B, Yeung ES, Xiao L. Anal Chem, 2016, 88: 11973-11977 CrossRef PubMed Google Scholar

[33] Fernández-Suárez M, Ting AY. Nat Rev Mol Cell Biol, 2008, 9: 929-943 CrossRef PubMed Google Scholar

[34] Yuan L, Wang X, Fang Y, Liu C, Jiang D, Wo X, Wang W, Chen HY. Anal Chem, 2016, 88: 2321-2326 CrossRef PubMed Google Scholar

[35] Chen C, Zhu S, Wang S, Zhang W, Cheng Y, Yan X. ACS Appl Mater Interfaces, 2017, 9: 13913-13919 CrossRef Google Scholar

[36] Ma F, Ren M, Zhang C. Sci China Chem, 2017, 60: 1285-1292 CrossRef Google Scholar

[37] Ma F, Li Y, Tang B, Zhang CY. Acc Chem Res, 2016, 49: 1722-1730 CrossRef PubMed Google Scholar

[38] Shi L, Jing C, Ma W, Li DW, Halls JE, Marken F, Long YT. Angew Chem Int Ed, 2013, 52: 6011-6014 CrossRef PubMed Google Scholar

[39] Zhang L, Li Y, Li DW, Jing C, Chen X, Lv M, Huang Q, Long YT, Willner I. Angew Chem Int Ed, 2011, 50: 6789-6792 CrossRef PubMed Google Scholar

[40] Jing C, Gu Z, Long YT. Faraday Discuss, 2016, 193: 371-385 CrossRef PubMed ADS Google Scholar

[41] Ma J, Zhan L, Li RS, Gao PF, Huang CZ. Anal Chem, 2017, 89: 8484-8489 CrossRef PubMed Google Scholar

[42] Li T, Xu X, Zhang G, Lin R, Chen Y, Li C, Liu F, Li N. Anal Chem, 2016, 88: 4188-4191 CrossRef PubMed Google Scholar

[43] Xiao L, Wei L, He Y, Yeung ES. Anal Chem, 2010, 82: 6308-6314 CrossRef PubMed Google Scholar

[44] Poon CY, Wei L, Xu Y, Chen B, Xiao L, Li HW. Anal Chem, 2016, 88: 8849-8856 CrossRef PubMed Google Scholar

[45] Qi F, Han Y, Ye Z, Liu H, Wei L, Xiao L. Anal Chem, 2018. Google Scholar

[46] Hu J, Wang ZY, Li CC, Zhang CY. Chem Commun, 2017, 53: 13284-13295 CrossRef PubMed Google Scholar

[47] Zhang C, Johnson LW. J Am Chem Soc, 2008, 130: 3750-3751 CrossRef PubMed Google Scholar

[48] Long Y, Zhang L, Zhang Y, Zhang C. Anal Chem, 2012, 84: 8846-8852 CrossRef PubMed Google Scholar

[49] Wang LJ, Yang Y, Zhang CY. Anal Chem, 2015, 87: 4696-4703 CrossRef PubMed Google Scholar

[50] Li X, Wei L, Pan L, Yi Z, Wang X, Ye Z, Xiao L, Li HW, Wang J. Anal Chem, 2018, 90: 4807-4814 CrossRef PubMed Google Scholar

[51] Shi X, He Y, Gao W, Liu X, Ye Z, Liu H, Xiao L. Anal Chem, 2018, 90: 3661-3665 CrossRef PubMed Google Scholar

[52] Su X, Li Z, Yan X, Wang L, Zhou X, Wei L, Xiao L, Yu C. Anal Chem, 2017, 89: 3576-3582 CrossRef PubMed Google Scholar

[53] Pan P, Wang Y, Zhu Y, Gao X, Ju Z, Qiu P, Wang L, Mao C. Nano Res, 2015, 8: 3562-3570 CrossRef PubMed Google Scholar

[54] Sunderland KS, Yang M, Mao C. Angew Chem Int Ed, 2017, 56: 1964-1992 CrossRef PubMed Google Scholar

[55] Zhao X, Tapec-Dytioco R, Tan W. J Am Chem Soc, 2003, 125: 11474-11475 CrossRef PubMed Google Scholar

[56] Zhou J, Wang Q, Zhang C. J Am Chem Soc, 2013, 135: 2056-2059 CrossRef PubMed Google Scholar

[57] Manzo C, Garcia-Parajo MF. Rep Prog Phys, 2015, 78: 124601 CrossRef PubMed ADS Google Scholar

[58] He H, Xie C, Ren J. Anal Chem, 2008, 80: 5951-5957 CrossRef PubMed Google Scholar

[59] Nan X, Sims PA, Xie XS. ChemPhysChem, 2008, 9: 707-712 CrossRef PubMed Google Scholar

[60] Ghosh P, Han G, De M, Kim CK, Rotello VM. Adv Drug Deliver Rev, 2008, 60: 1307-1315 CrossRef PubMed Google Scholar

[61] Wei L, Zhao X, Chen B, Li H, Xiao L, Yeung ES. Anal Chem, 2013, 85: 5169-5175 CrossRef PubMed Google Scholar

[62] Liang L, Li J, Li Q, Huang Q, Shi J, Yan H, Fan C. Angew Chem Int Ed, 2014, 53: 7745-7750 CrossRef PubMed Google Scholar

[63] Sun Y, Li N, Zhang M, Zhou W, Yuan J, Zhao R, Wu J, Li Z, Zhang Y, Fang X. Chem Commun, 2016, 52: 7086-7089 CrossRef PubMed Google Scholar

[64] Li N, Yang Y, He K, Zhang F, Zhao L, Zhou W, Yuan J, Liang W, Fang X. Sci Rep, 2016, 6: 33469 CrossRef PubMed ADS Google Scholar

[65] Cheng M, Zhang W, Yuan J, Luo W, Li N, Lin S, Yang Y, Fang X, Chen PR. Chem Commun, 2014, 50: 14724-14727 CrossRef PubMed Google Scholar

[66] Marchuk K, Guo Y, Sun W, Vela J, Fang N. J Am Chem Soc, 2012, 134: 6108-6111 CrossRef PubMed Google Scholar

[67] Sun W, Wang G, Fang N, Yeung ES. Anal Chem, 2009, 81: 9203-9208 CrossRef PubMed Google Scholar

[68] Chen K, Gu Y, Sun W, Bin Dong W, Wang G, Fan X, Xia T, Fang N. Nat Commun, 2017, 8: 887 CrossRef PubMed ADS Google Scholar

[69] Xiao L, Wei L, Liu C, He Y, Yeung ES. Angew Chem Int Ed, 2012, 51: 4181-4184 CrossRef PubMed Google Scholar

[70] Liu SL, Wang ZG, Zhang ZL, Pang DW. Chem Soc Rev, 2016, 45: 1211-1224 CrossRef PubMed Google Scholar

[71] Liu SL, Zhang LJ, Wang ZG, Zhang ZL, Wu QM, Sun EZ, Shi YB, Pang DW. Anal Chem, 2014, 86: 3902-3908 CrossRef PubMed Google Scholar

[72] Li Q, Li W, Yin W, Guo J, Zhang ZP, Zeng D, Zhang X, Wu Y, Zhang XE, Cui Z. ACS Nano, 2017, 11: 3890-3903 CrossRef Google Scholar

[73] Joo KI, Lei Y, Lee CL, Lo J, Xie J, Hamm-Alvarez SF, Wang P. ACS Nano, 2008, 2: 1553-1562 CrossRef PubMed Google Scholar

[74] Liu M, Li Q, Liang L, Li J, Wang K, Li J, Lv M, Chen N, Song H, Lee J, Shi J, Wang L, Lal R, Fan C. Nat Commun, 2017, 8: 15646 CrossRef PubMed ADS Google Scholar

[75] Levsky JM, Shenoy SM, Pezo RC, Singer RH. Science, 2002, 297: 836-840 CrossRef PubMed ADS Google Scholar

[76] Rust MJ, Bates M, Zhuang X. Nat Meth, 2006, 3: 793-796 CrossRef PubMed Google Scholar

[77] Huang B, Babcock H, Zhuang X. Cell, 2010, 143: 1047-1058 CrossRef PubMed Google Scholar

[78] Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM. Nat Methods, 2010, 7: 339-340 CrossRef PubMed Google Scholar

[79] Burnette DT, Sengupta P, Dai Y, Lippincott-Schwartz J, Kachar B. Proc Natl Acad Sci USA, 2011, 108: 21081-21086 CrossRef PubMed ADS Google Scholar

[80] Zhang M, Chang H, Zhang Y, Yu J, Wu L, Ji W, Chen J, Liu B, Lu J, Liu Y, Zhang J, Xu P, Xu T. Nat Methods, 2012, 9: 727-729 CrossRef PubMed Google Scholar

[81] Wombacher R, Heidbreder M, van de Linde S, Sheetz MP, Heilemann M, Cornish VW, Sauer M. Nat Methods, 2010, 7: 717-719 CrossRef PubMed Google Scholar

[82] Kaminski Schierle GS, van de Linde S, Erdelyi M, Esbjörner EK, Klein T, Rees E, Bertoncini CW, Dobson CM, Sauer M, Kaminski CF. J Am Chem Soc, 2011, 133: 12902-12905 CrossRef PubMed Google Scholar

[83] Lukinavičius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Corrêa Jr IR, Luo ZG, Schultz C, Lemke EA, Heppenstall P, Eggeling C, Manley S, Johnsson K. Nat Chem, 2013, 5: 132-139 CrossRef PubMed ADS Google Scholar

[84] Uno SN, Kamiya M, Yoshihara T, Sugawara K, Okabe K, Tarhan MC, Fujita H, Funatsu T, Okada Y, Tobita S, Urano Y. Nat Chem, 2014, 6: 681-689 CrossRef PubMed ADS Google Scholar

[85] Lidke KA, Rieger B, Jovin TM, Heintzmann R. Opt Express, 2005, 13: 7052-7062 CrossRef ADS Google Scholar

[86] He H, Liu X, Li S, Wang X, Wang Q, Li J, Wang J, Ren H, Ge B, Wang S, Zhang X, Huang F. Anal Chem, 2017, 89: 11831-11838 CrossRef PubMed Google Scholar

[87] Pinotsi D, Buell AK, Galvagnion C, Dobson CM, Kaminski Schierle GS, Kaminski CF. Nano Lett, 2014, 14: 339-345 CrossRef PubMed ADS Google Scholar

[88] Letschert S, Göhler A, Franke C, Bertleff-Zieschang N, Memmel E, Doose S, Seibel J, Sauer M. Angew Chem Int Ed, 2014, 53: 10921-10924 CrossRef PubMed Google Scholar

[89] Jiang Y, Novoa M, Nongnual T, Powell R, Bruce T, McNeill J. Nano Lett, 2017, 17: 3896-3901 CrossRef PubMed ADS Google Scholar

[90] Wei L, Liu C, Chen B, Zhou P, Li H, Xiao L, Yeung ES. Anal Chem, 2013, 85: 3789-3793 CrossRef PubMed Google Scholar

[91] Wei L, Ma Y, Zhu X, Xu J, Wang Y, Duan H, Xiao L. Nanoscale, 2017, 9: 8747-8755 CrossRef PubMed Google Scholar

[92] Bell AT. Science, 2003, 299: 1688-1691 CrossRef PubMed ADS Google Scholar

[93] Weckhuysen BM. Angew Chem Int Ed, 2009, 48: 4910-4943 CrossRef PubMed Google Scholar

[94] Weckhuysen BM. Chem Soc Rev, 2010, 39: 4557-4559 CrossRef Google Scholar

[95] Chen T, Chen S, Song P, Zhang Y, Su H, Xu W, Zeng J. ACS Catal, 2017, 7: 2967-2972 CrossRef Google Scholar

[96] Chen T, Chen S, Zhang Y, Qi Y, Zhao Y, Xu W, Zeng J. Angew Chem Int Ed, 2016, 55: 1839-1843 CrossRef PubMed Google Scholar

[97] Sambur JB, Chen P. Annu Rev Phys Chem, 2014, 65: 395-422 CrossRef PubMed ADS Google Scholar

[98] Zambelli T, Wintterlin J, Trost J, Ertl G. Science, 1996, 273: 1688-1690 CrossRef ADS Google Scholar

[99] Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Science, 2007, 317: 100-102 CrossRef PubMed ADS Google Scholar

[100] Xu W, Kong JS, Chen P. J Phys Chem C, 2009, 113: 2393-2404 CrossRef Google Scholar

[101] Xu W, Shen H, Liu G, Chen P. Nano Res, 2009, 2: 911-922 CrossRef Google Scholar

[102] Xu W, Kong JS, Yeh YTE, Chen P. Nat Mater, 2008, 7: 992-996 CrossRef PubMed ADS Google Scholar

[103] Zhou X, Xu W, Liu G, Panda D, Chen P. J Am Chem Soc, 2010, 132: 138-146 CrossRef PubMed Google Scholar

[104] Moon J, Takagi H, Fujishiro Y, Awano M. J Mater Sci, 2001, 36: 949-955 CrossRef ADS Google Scholar

[105] Wang N, Tachikawa T, Majima T. Chem Sci, 2011, 2: 891-900 CrossRef Google Scholar

[106] Zhou X, Andoy NM, Liu G, Choudhary E, Han KS, Shen H, Chen P. Nat Nanotech, 2012, 7: 237-241 CrossRef PubMed ADS Google Scholar

[107] Andoy NM, Zhou X, Choudhary E, Shen H, Liu G, Chen P. J Am Chem Soc, 2013, 135: 1845-1852 CrossRef PubMed Google Scholar

[108] Zhang Y, Lucas JM, Song P, Beberwyck B, Fu Q, Xu W, Alivisatos AP. Proc Natl Acad Sci USA, 2015, 112: 8959-8964 CrossRef PubMed ADS Google Scholar

[109] Han R, Ha JW, Xiao C, Pei Y, Qi Z, Dong B, Bormann NL, Huang W, Fang N. Angew Chem Int Ed, 2014, 53: 12865-12869 CrossRef PubMed Google Scholar

[110] Ristanović Z, Hofmann JP, De Cremer G, Kubarev AV, Rohnke M, Meirer F, Hofkens J, Roeffaers MBJ, Weckhuysen BM. J Am Chem Soc, 2015, 137: 6559-6568 CrossRef PubMed Google Scholar

[111] Roeffaers MBJ, De Cremer G, Libeert J, Ameloot R, Dedecker P, Bons A, Bückins M, Martens JA, Sels BF, De Vos DE, Hofkens J. Angew Chem Int Ed, 2009, 48: 9285-9289 CrossRef PubMed Google Scholar

  • Figure 1

    Schematic diagram of single-molecule detection. (A) Schematic illustration of biomarker detection using scattering-based single particle intensity measurement with a dark-field microscope [44]. (B) Schematic diagram of the light path for the optical microscopic imaging of single nanoparticle and the principle of the color-coded SPD for PPi assay [45]. (C) Schematic diagram of the light path for the optical microscopic imaging of UCNPs and the principle of digital immunosorbent assay by single-particle enumeration [50]. (D) Detection of adenosine molecules based on the single molecule photobleaching measurement [51]. (E) Telomerase detection by single molecule stochastic binding of the telomeric repeats, single-molecule fluorescent trajectories in the presence and absence of telomerase [52] (color online).

  • Figure 2

    Single-particle tracking. (A) Schematic representation of the diverse lateral diffusion of molecular components on the cell surface [57]. (B) Schematic diagram of TAT-modified GNPs diffusion on lipid membrane [61]. (C) Dual-view optics for single particle translational and rotational tracking [69]. (D) Influenza viruses moving along different configurations of microtubules [71] (color online).

  • Figure 3

    (A) Super-resolution imaging permits the nature and morphology of intracellular Aβ1-42 aggregates to be probed in situ [82]. (B) Super-resolution imaging and analysis of cell-surface glycoproteins [88]. (C) A sequence of fluorescence microscopy images showing the blinking behavior of an E. coli labeled with 20% PCBM-doped PFBT CPNs [89]. (D) Super-resolution imaging of single molecules in a conjugated hotspot region [90] (color online).

  • Figure 4

    Single-particle catalysis and super-resolution imaging. (A) Single-turnover detection of single-Au-nanoparticle catalysis [102]. (B) Autocorrelation functions of the τoff (a) and τon (b) from the turnover trajectory of a single 9.1 nm Au-nanoparticle; dependence of the activity fluctuation rate of the τoff reaction (c) and the τon reaction (d) [96]. (C) Quantitative reaction kinetics of a single Au@mSiO2 nanorod at subparticle resolution [106]. (D) Spatially resolved activity quantitation on single Au@mSiO2 nanoplates [107] (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1